同步操作将从 XiaoJake/OpenPCDet 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
OpenPCDet
is a clear, simple, self-contained open source project for LiDAR-based 3D object detection.
It is also the official code release of [PointRCNN]
, [Part-A^2 net]
and [PV-RCNN]
.
[2020-11-27] Bugfixed: Please re-prepare the validation infos of Waymo dataset (version 1.2) if you would like to use our provided Waymo evaluation tool (see PR). Note that you do not need to re-prepare the training data and ground-truth database.
[2020-11-10] NEW: The Waymo Open Dataset has been supported with state-of-the-art results. Currently we provide the
configs and results of SECOND
, PartA2
and PV-RCNN
on the Waymo Open Dataset, and more models could be easily supported by modifying their dataset configs.
[2020-08-10] Bugfixed: The provided NuScenes models have been updated to fix the loading bugs. Please redownload it if you need to use the pretrained NuScenes models.
[2020-07-30] OpenPCDet
v0.3.0 is released with the following features:
PointRCNN
, PartA2-Free
) are supported now.SECOND-MultiHead (CBGS)
and PointPillar-MultiHead
).[2020-07-17] Add simple visualization codes and a quick demo to test with custom data.
[2020-06-24] OpenPCDet
v0.2.0 is released with pretty new structures to support more models and datasets.
[2020-03-16] OpenPCDet
v0.1.0 is released.
OpenPCDet
toolbox do?Note that we have upgrated PCDet
from v0.1
to v0.2
with pretty new structures to support various datasets and models.
OpenPCDet
is a general PyTorch-based codebase for 3D object detection from point cloud.
It currently supports multiple state-of-the-art 3D object detection methods with highly refactored codes for both one-stage and two-stage 3D detection frameworks.
Based on OpenPCDet
toolbox, we win the Waymo Open Dataset challenge in 3D Detection,
3D Tracking, Domain Adaptation
three tracks among all LiDAR-only methods, and the Waymo related models will be released to OpenPCDet
soon.
We are actively updating this repo currently, and more datasets and models will be supported soon. Contributions are also welcomed.
OpenPCDet
design pattern
Unified 3D box definition: (x, y, z, dx, dy, dz, heading).
Flexible and clear model structure to easily support various 3D detection models:
Selected supported methods are shown in the below table. The results are the 3D detection performance of moderate difficulty on the val set of KITTI dataset.
training time | Car@R11 | Pedestrian@R11 | Cyclist@R11 | download | |
---|---|---|---|---|---|
PointPillar | ~1.2 hours | 77.28 | 52.29 | 62.68 | model-18M |
SECOND | ~1.7 hours | 78.62 | 52.98 | 67.15 | model-20M |
PointRCNN | ~3 hours | 78.70 | 54.41 | 72.11 | model-16M |
PointRCNN-IoU | ~3 hours | 78.75 | 58.32 | 71.34 | model-16M |
Part-A^2-Free | ~3.8 hours | 78.72 | 65.99 | 74.29 | model-226M |
Part-A^2-Anchor | ~4.3 hours | 79.40 | 60.05 | 69.90 | model-244M |
PV-RCNN | ~5 hours | 83.61 | 57.90 | 70.47 | model-50M |
All models are trained with 8 GTX 1080Ti GPUs and are available for download.
mATE | mASE | mAOE | mAVE | mAAE | mAP | NDS | download | |
---|---|---|---|---|---|---|---|---|
PointPillar-MultiHead | 33.87 | 26.00 | 32.07 | 28.74 | 20.15 | 44.63 | 58.23 | model-23M |
SECOND-MultiHead (CBGS) | 31.15 | 25.51 | 26.64 | 26.26 | 20.46 | 50.59 | 62.29 | model-35M |
We provide the setting of DATA_CONFIG.SAMPLED_INTERVAL
on the Waymo Open Dataset (WOD) to subsample partial samples for training and evaluation,
so you could also play with WOD by setting a smaller DATA_CONFIG.SAMPLED_INTERVAL
even if you only have limited GPU resources.
By default, all models are trained with 20% data (~32k frames) of all the training samples on 8 GTX 1080Ti GPUs, and the results of each cell here are mAP/mAPH calculated by the official Waymo evaluation metrics on the whole validation set (version 1.2).
Vec_L1 | Vec_L2 | Ped_L1 | Ped_L2 | Cyc_L1 | Cyc_L2 | |
---|---|---|---|---|---|---|
SECOND | 68.03/67.44 | 59.57/59.04 | 61.14/50.33 | 53.00/43.56 | 54.66/53.31 | 52.67/51.37 |
Part-A^2-Anchor | 71.82/71.29 | 64.33/63.82 | 63.15/54.96 | 54.24/47.11 | 65.23/63.92 | 62.61/61.35 |
PV-RCNN | 74.06/73.38 | 64.99/64.38 | 62.66/52.68 | 53.80/45.14 | 63.32/61.71 | 60.72/59.18 |
We could not provide the above pretrained models due to Waymo Dataset License Agreement, but you could easily achieve similar performance by training with the default configs.
More datasets are on the way.
Please refer to INSTALL.md for the installation of OpenPCDet
.
Please refer to DEMO.md for a quick demo to test with a pretrained model and visualize the predicted results on your custom data or the original KITTI data.
Please refer to GETTING_STARTED.md to learn more usage about this project.
OpenPCDet
is released under the Apache 2.0 license.
OpenPCDet
is an open source project for LiDAR-based 3D scene perception that supports multiple
LiDAR-based perception models as shown above. Some parts of PCDet
are learned from the official released codes of the above supported methods.
We would like to thank for their proposed methods and the official implementation.
We hope that this repo could serve as a strong and flexible codebase to benefit the research community by speeding up the process of reimplementing previous works and/or developing new methods.
If you find this project useful in your research, please consider cite:
@misc{openpcdet2020,
title={OpenPCDet: An Open-source Toolbox for 3D Object Detection from Point Clouds},
author={OpenPCDet Development Team},
howpublished = {\url{https://github.com/open-mmlab/OpenPCDet}},
year={2020}
}
Welcome to be a member of the OpenPCDet development team by contributing to this repo, and feel free to contact us for any potential contributions.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。