代码拉取完成,页面将自动刷新
---
layout: null
---
{
"paperRef":[
{"label":"Turing:1950", "value":"Turing, A. M. 'Mind.' Mind 59.236 (1950): 433-460."},
{"label":"Berlekamp+al:1982", "value":"Wolfram, Stephen. 'Statistical mechanics of cellular automata.' Reviews of modern physics 55.3 (1983): 601."},
{"label":"Amarel:1968", "value":"Shai, Offer. 'Transforming engineering problems through graph representations.' Advanced Engineering Informatics 17.2 (2003): 77-93."},
{"label":"Pohl:1977","value":"Pohl, Lance R., et al. 'Phosgene: a metabolite of chloroform.' Biochemical and biophysical research communications 79.3 (1977): 684-691."},
{"label":"Gaschnig:1979", "value":"Gaschnig, John. 'Preliminary performance analysis of the prospector consultant system for mineral exploration.' Proceedings of the 6th international joint conference on Artificial intelligence-Volume 1. Morgan Kaufmann Publishers Inc., 1979."},
{"label":"Berliner:1979", "value":"House, William F., Karen I. Berliner, and Laurie S. Eisenberg. 'Present status and future directions of the Ear Research Institute cochlear implant program.' Acta oto-laryngologica 87.3-6 (1979): 176-184."},
{"label":"McAllester:1988", "value":"McAllester, David Allen. 'Conspiracy numbers for min-max search.' Artificial Intelligence 35.3 (1988): 287-310."},
{"label":"Russell+Wefald:1989", "value":"Russell, Stuart J., and Eric Wefald. 'On Optimal Game-Tree Search using Rational Meta-Reasoning.' IJCAI. 1989."},
{"label":"Ballard:1983", "value":"Langston, J. William, et al. 'Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.' Science 219.4587 (1983): 979-980."},
{"label":"Barwise+Etchemendy:1993", "value":"Barwise, Jon, and John Etchemendy. 'The Language of First-Order Logic Including the Macintosh Version of Tarski's World 4.0.' (1993)."},
{"label":"Kowalski:1979", "value":"Kowalski, Robert. Logic for problem solving. Vol. 7. Ediciones Díaz de Santos, 1979."},
{"label":"Smith+al:1986", "value":"Eccardt, Curtis J., and Arnold L. Smith. 'Tool elevation and bevel adjustment for direct drive power tool.' U.S. Patent No. 4,599,927. 15 Jul. 1986."},
{"label":"Fagin+al:1995", "value":"Carey, Michael J., et al. 'Towards heterogeneous multimedia information systems: The Garlic approach.' Proceedings RIDE-DOM'95. Fifth International Workshop on Research Issues in Data Engineering-Distributed Object Management. IEEE, 1995."},
{"label":"Pearl:1988", "value":"Pearl, Judea. 'Embracing causality in default reasoning.' Artificial Intelligence 35.2 (1988): 259-271."},
{"label":"Shachter:1986", "value":"Shachter, Ross D. Evaluating influence diagrams. Operations research 34.6 (1986): 871-882."},
{"label":"Bernstein:1996", "value":"Bernstein, Peter L., and Peter L. Bernstein. Against the gods: The remarkable story of risk. New York: Wiley, 1996."},
{"label":"Longley+Sankaran:2005", "value":"Longley, Neil, and Swaminathan Sankaran. 'The NHL’s overtime-loss rule: Empirically analyzing the unintended effects.' Atlantic Economic Journal 33.1 (2005): 137-138."},
{"label":"Quinlan:1986", "value":"Quinlan, J. Ross. 'Induction of decision trees.' Machine learning 1.1 (1986): 81-106."},
{"label":"Kearns+Mansour:1998", "value":"Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. 'An information-theoretic analysis of hard and soft assignment methods for clustering.' Learning in graphical models. Springer, Dordrecht, 1998. 495-520."},
{"label":"Jurafsky+Martin:2000", "value":"Stolcke, Andreas, et al. 'Dialogue act modeling for automatic tagging and recognition of conversational speech.' Computational linguistics 26.3 (2000): 339-373."},
{"label":"Knight:1999", "value":"Arksey, Hilary, and Peter T. Knight. Interviewing for social scientists: An introductory resource with examples. Sage, 1999."},
{"label":"Bransford+Johnson:1973", "value":"Bransford, John D., and Marcia K. Johnson. 'Considerations of some problems of comprehension.' Visual information processing. Academic Press, 1973. 383-438."},
{"label":"Perlis:1982", "value":"Perlis, Alan J. 'Special feature: Epigrams on programming.' ACM Sigplan Notices 17.9 (1982): 7-13."},
{"label":"McAllester:1988","value":"McAllester, David Allen. 'Conspiracy numbers for min-max search.' Artificial Intelligence 35.3 (1988): 287-310."},
{"label":"Nilsson:1971","value":"Astedt, B., L. Svanberg, and I. M. Nilsson. 'Fibrin degradation products and ovarian tumours.' British medical journal 4.5785 (1971): 458-459."},
{"label":"Mostow+Prieditis:1989","value":"Mostow, Jack, and Armand Prieditis. 'Discovering admissible heuristics by abstracting and optimizing: A transformational approach.' (1989): 701-707."},
{"label":"Hansson+al:1992","value":"Bigos, STANLEY J., et al. 'A longitudinal, prospective study of industrial back injury reporting.' Clinical orthopaedics and related research 279 (1992): 21-34."},
{"label":"Blinder:1983","value":"Blinder, Alan S., and Joseph E. Stiglitz. 'Money, credit constraints, and economic activity.'' (1983)."}
]
,
"pageRef":[
{"label":"vacuum-rationality-page", "value":""},
{"label":"nqueens-page", "value":""},
{"label":"non-negative-g", "value":""},
{"label":"iterative-lengthening-page", "value":""},
{"label":"I-to-F", "value":""},
{"label":"Gaschnig-h-page", "value":""},
{"label":"wumpus-seq35-figure", "value":""},
{"label":"logical-equivalence-table", "value":""},
{"label":"backtracking-search-algorithm", "value":""},
{"label":"1cnf-belief-state-page", "value":""},
{"label":"pit-biconditional-equation", "value":""},
{"label":"subsumption-lattice-figure", "value":""},
{"label":"kinship-domain-section", "value":""},
{"label":"west-problem-page", "value":""},
{"label":"sussman-anomaly-figure", "value":""},
{"label":"set-level-page", "value":""},
{"label":"satplan-agent-algorithm", "value":""},
{"label":"romania-distances-figure", "value":""},
{"label":"logical-omniscience", "value":""},
{"label":"description-logic-ex", "value":""},
{"label":"possible-worlds-page", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"conditional-probability-equation", "value":""},
{"label":"marginalization-equation", "value":""},
{"label":"markov-blanket-page", "value":""},
{"label":"markov-blanket-equation", "value":""},
{"label":"probit-page", "value":""},
{"label":"enumeration-algorithm", "value":""},
{"label":"CSI-page", "value":""},
{"label":"elimination-ask-algorithm", "value":""},
{"label":"rain-clustering-figure", "value":""},
{"label":"forward-backward-algorithm", "value":""},
{"label":"flawed-viterbi-page", "value":""},
{"label":"vacuum-maze-hmm2-figure", "value":""},
{"label":"kalman-one-step-equation", "value":""},
{"label":"kalman-univariate-equation", "value":""},
{"label":"battery-persistence-figure", "value":""},
{"label":"allais-page", "value":""},
{"label":"vi-contraction-equation", "value":""},
{"label":"line-game4-figure", "value":""},
{"label":"4x3-pomdp-page", "value":""},
{"label":"2state-pomdp-page", "value":""},
{"label":"DTL-algorithm", "value":""},
{"label":"logistic-regression-section", "value":""},
{"label":"dbsig-page", "value":""},
{"label":"bayes-candy-figure", "value":""},
{"label":"candy-counts-page", "value":""},
{"label":"illuminationfigure", "value":""},
{"label":"inverse-kinematics-not-unique", "value":""},
{"label":"polygon-stability-condition-page.", "value":""},
{"label":"multivalued-sensorless-page","value":""},
{"label":"backward-chaining-algorithm","value":""},
{"label":"LG-network-page","value":""},
{"label":"Fig5","value":""}
]
,
"sectionRef":[
{"label":"env-properties-subsection", "value":""},
{"label":"cyclic-plan-section", "value":""},
{"label":"conformant-section", "value":""},
{"label":"csp-structure-section", "value":""},
{"label":"pl-resolution-section", "value":""},
{"label":"successor-state-section", "value":""},
{"label":"Peano-section", "value":""},
{"label":"circuits-section", "value":""},
{"label":"kinship-domain-section", "value":""},
{"label":"canonical-distribution-section", "value":""},
{"label":"exact-inference-section", "value":""},
{"label":"hmm-localization-section", "value":""},
{"label":"VPI-section", "value":""},
{"label":"general-filtering-section", "value":" "},
{"label":"chi-squared-section", "value":" "},
{"label":"broadening-decision-tree-section", "value":""},
{"label":"learning-theory-section", "value":""},
{"label":"logistic-regression-section", "value":""},
{"label":"statistical-learning-section", "value":""},
{"label":"canonical-distribution-section", "value":""},
{"label":"passive-rl-section", "value":""}
]
,
"exerciseRef":[
{"label":"vacuum-start-exercise", "value":"2.10","link":"{{site.baseurl}}/agents-exercises/ex_10"},
{"label":"brio-exercise", "value":"3.19","link":"{{site.baseurl}}/search-exercises/ex_19"},
{"label":"tsp-mst-exercise", "value":"3.38","link":"{{site.baseurl}}/search-exercises/ex_38"},
{"label":"path-planning-agent-exercise", "value":"4.11","link":"{{site.baseurl}}/advanced-search-exercises/ex_11"},
{"label":"path-planning-exercise", "value":"3.9","link":"{{site.baseurl}}/search-exercises/ex_9"},
{"label":"two-friends-exercise", "value":"3.5","link":"{{site.baseurl}}/search-exercises/ex_5"},
{"label":"game-playing-chance-exercise","value":"5.4","link":"{{site.baseurl}}/game-playing-exercises/ex_4"},
{"label":"game-playing-monte-carlo-exercise", "value":"5.21","link":"{{site.baseurl}}/game-playing-exercises/ex_21"},
{"label":"convert-clausal-exercise", "value":"7.25","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_25"},
{"label":"telescope-exercise", "value":"14.14"},
{"label":"hmm-robust-exercise", "value":"15.7"},
{"label":"sleep1-exercise", "value":"15.15"},
{"label":"airport-id-exercise", "value":"16.21"},
{"label":"airport-au-id-exercise", "value":"16.17"},
{"label":"vacuum-rationality-exercise", "value":"2.2","link":"{{site.baseurl}}/agents-exercises/ex_2"},
{"label":"PEAS-exercise", "value":"2.5","link":"{{site.baseurl}}/agents-exercises/ex_5"},
{"label":"agent-fn-prog-exercise", "value":"2.7","link":"{{site.baseurl}}/agents-exercises/ex_7"},
{"label":"vacuum-motion-penalty-exercise", "value":"2.12","link":"{{site.baseurl}}/agents-exercises/ex_12"},
{"label":"vacuum-unknown-geog-exercise", "value":"2.13","link":"{{site.baseurl}}/agents-exercises/ex_13"},
{"label":"vacuum-bump-exercise", "value":"2.14","link":"{{site.baseurl}}/agents-exercises/ex_14"},
{"label":"vacuum-finish-exercise", "value":"2.15","link":"{{site.baseurl}}/agents-exercises/ex_15"},
{"label":"8puzzle-parity-exercise", "value":"3.6","link":"{{site.baseurl}}/search-exercises/ex_6"},
{"label":"nqueens-size-exercise", "value":"3.7","link":"{{site.baseurl}}/search-exercises/ex_7"},
{"label":"negative-g-exercise", "value":"3.10","link":"{{site.baseurl}}/search-exercises/ex_10"},
{"label":"mc-problem", "value":"3.11","link":"{{site.baseurl}}/search-exercises/ex_11"},
{"label":"graph-separation-property-exercise", "value":"3.16","link":"{{site.baseurl}}/search-exercises/ex_16"},
{"label":"vacuum-search-exercise", "value":"3.24","link":"{{site.baseurl}}/search-exercises/ex_24"},
{"label":"iterative-lengthening-exercise", "value":"3.21","link":"{{site.baseurl}}/search-exercises/ex_21"},
{"label":"search-special-case-exercise", "value":"3.25","link":"{{site.baseurl}}/search-exercises/ex_25"},
{"label":"failure-exercise", "value":"3.29","link":"{{site.baseurl}}/search-exercises/ex_29"},
{"label":"consistent-heuristic-exercise", "value":"3.37","link":"{{site.baseurl}}/search-exercises/ex_37"},
{"label":"tsp-mst-exercise", "value":"3.38","link":"{{site.baseurl}}/search-exercises/ex_38"},
{"label":"Gaschnig-h-exercise", "value":"3.39","link":"{{site.baseurl}}/search-exercises/ex_39"},
{"label":"hill-climbing-exercise", "value":"4.4","link":"{{site.baseurl}}/advanced-search-exercises/ex_4"},
{"label":"cond-plan-repeated-exercise", "value":"4.5","link":"{{site.baseurl}}/advanced-search-exercises/ex_5"},
{"label":"cond-loop-exercise", "value":"4.6","link":"{{site.baseurl}}/advanced-search-exercises/ex_6"},
{"label":"belief-state-superset-exercise", "value":"4.8","link":"{{site.baseurl}}/advanced-search-exercises/ex_8"},
{"label":"multivalued-sensorless-exercise", "value":"4.9","link":"{{site.baseurl}}/advanced-search-exercises/ex_9"},
{"label":"vacuum-solvable-exercise", "value":"4.10","link":"{{site.baseurl}}/advanced-search-exercises/ex_10"},
{"label":"path-planning-agent-exercise", "value":"4.12","link":"{{site.baseurl}}/advanced-search-exercises/ex_12"},
{"label":"online-offline-exercise", "value":"4.13","link":"{{site.baseurl}}/advanced-search-exercises/ex_13"},
{"label":"path-planning-hc-exercise", "value":"4.15","link":"{{site.baseurl}}/advanced-search-exercises/ex_15"},
{"label":"minimax-optimality-exercise", "value":"5.7","link":"{{site.baseurl}}/game-playing-exercises/ex_7"},
{"label":"game-linear-transform", "value":"5.20","link":"{{site.baseurl}}/game-playing-exercises/ex_20"},
{"label":"crossword-exercise", "value":"6.3","link":"{{site.baseurl}}/csp-exercises/ex_3"},
{"label":"csp-definition-exercise", "value":"6.4","link":"{{site.baseurl}}/csp-exercises/ex_4"},
{"label":"nary-csp-exercise", "value":"6.6","link":"{{site.baseurl}}/csp-exercises/ex_6"},
{"label":"zebra-exercise", "value":"6.7","link":"{{site.baseurl}}/csp-exercises/ex_7"},
{"label":"ac4-exercise", "value":"6.14","link":"{{site.baseurl}}/csp-exercises/ex_14"},
{"label":"truth-value-exercise", "value":"7.3","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_3"},
{"label":"deduction-theorem-exercise", "value":"7.6","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_6"},
{"label":"logical-equivalence-exercise", "value":"7.11","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_11"},
{"label":"propositional-validity-exercise", "value":"7.12","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_12"},
{"label":"cnf-proof-exercise", "value":"7.14","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_14"},
{"label":"inf-exercise", "value":"7.16","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_16"},
{"label":"dnf-exercise", "value":"7.24","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_24"},
{"label":"minesweeper-exercise", "value":"7.28","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_28"},
{"label":"known-literal-exercise", "value":"7.29","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_29"},
{"label":"dpll-fc-exercise", "value":"7.30","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_30"},
{"label":"ss-axiom-exercise", "value":"7.34","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_34"},
{"label":"hybrid-wumpus-exercise", "value":"7.35","link":"{{site.baseurl}}/knowledge-logic-exercises/ex_35"},
{"label":"fol-model-count-exercise", "value":"8.6","link":"{{site.baseurl}}/fol-exercises/ex_6"},
{"label":"nqueens-size-exercise", "value":"8.7","link":"{{site.baseurl}}/fol-exercises/ex_7"},
{"label":"empty-universe-exercise", "value":"8.8","link":"{{site.baseurl}}/fol-exercises/ex_8"},
{"label":"hillary-exercise", "value":"8.9","link":"{{site.baseurl}}/fol-exercises/ex_9"},
{"label":"language-determination-exercise", "value":"8.13","link":"{{site.baseurl}}/fol-exercises/ex_13"},
{"label":"Peano-completion-exercise", "value":"8.15","link":"{{site.baseurl}}/fol-exercises/ex_15"},
{"label":"wumpus-diagnostic-exercise", "value":"8.16","link":"{{site.baseurl}}/fol-exercises/ex_16"},
{"label":"kinship-exercise", "value":"8.17","link":"{{site.baseurl}}/fol-exercises/ex_17"},
{"label":"list-representation-exercise", "value":"8.20","link":"{{site.baseurl}}/fol-exercises/ex_20"},
{"label":"adjacency-exercise", "value":"8.21","link":"{{site.baseurl}}/fol-exercises/ex_21"},
{"label":"4bit-adder-exercise", "value":"8.33","link":"{{site.baseurl}}/fol-exercises/ex_33"},
{"label":"subsumption-lattice-exercise", "value":"9.6","link":"{{site.baseurl}}/logical-inference-exercises/ex_6"},
{"label":"fol-horses-exercise", "value":"9.7","link":"{{site.baseurl}}/logical-inference-exercises/ex_7"},
{"label":"csp-clause-exercise", "value":"9.10","link":"{{site.baseurl}}/logical-inference-exercises/ex_10"},
{"label":"standardize-failure-exercise", "value":"9.15","link":"{{site.baseurl}}/logical-inference-exercises/ex_15"},
{"label":"bc-trace-exercise", "value":"9.17","link":"{{site.baseurl}}/logical-inference-exercises/ex_17"},
{"label":"diff-simplify-exercise", "value":"9.21","link":"{{site.baseurl}}/logical-inference-exercises/ex_21"},
{"label":"quantifier-order-exercise", "value":"9.29","link":"{{site.baseurl}}/logical-inference-exercises/ex_29"},
{"label":"strips-airport-exercise", "value":"10.3","link":"{{site.baseurl}}/planning-exercises/ex_3"},
{"label":"negative-effects-exercise", "value":"10.7","link":"{{site.baseurl}}/planning-exercises/ex_7"},
{"label":"sussman-anomaly-exercise", "value":"10.8","link":"{{site.baseurl}}/planning-exercises/ex_8"},
{"label":"graphplan-proof-exercise", "value":"10.11","link":"{{site.baseurl}}/planning-exercises/ex_11"},
{"label":"satplan-preconditions-exercise", "value":"10.16","link":"{{site.baseurl}}/planning-exercises/ex_16"},
{"label":"strips-translation-exercise", "value":"10.17","link":"{{site.baseurl}}/planning-exercises/ex_17"},
{"label":"disjunctive-satplan-exercise", "value":"10.18","link":"{{site.baseurl}}/planning-exercises/ex_18"},
{"label":"HLA-unique-exercise", "value":"11.3","link":"{{site.baseurl}}/advanced-planning-exercises/ex_3"},
{"label":"HLA-progression-exercise", "value":"11.5","link":"{{site.baseurl}}/advanced-planning-exercises/ex_5"},
{"label":"conformant-flip-literal-exercise", "value":"11.9","link":"{{site.baseurl}}/advanced-planning-exercises/ex_9"},
{"label":"alt-vacuum-exercise", "value":"11.11","link":"{{site.baseurl}}/advanced-planning-exercises/ex_11"},
{"label":"windows-exercise", "value":"12.4","link":"{{site.baseurl}}/kr-exercises/ex_4"},
{"label":"part-decomposition-exercise", "value":"12.10","link":"{{site.baseurl}}/kr-exercises/ex_10"},
{"label":"alt-measure-exercise", "value":"12.11","link":"{{site.baseurl}}/kr-exercises/ex_11"},
{"label":"namematch-exercise", "value":"12.13","link":"{{site.baseurl}}/kr-exercises/ex_13"},
{"label":"exchange-rates-exercise", "value":"12.18","link":"{{site.baseurl}}/kr-exercises/ex_18"},
{"label":"fixed-definition-exercise", "value":"12.19","link":"{{site.baseurl}}/kr-exercises/ex_19"},
{"label":"card-on-forehead-exercise", "value":"12.22","link":"{{site.baseurl}}/kr-exercises/ex_22"},
{"label":"natural-stupidity-exercise", "value":"12.27","link":"{{site.baseurl}}/kr-exercises/ex_27"},
{"label":"shopping-grammar-exercise", "value":"12.29","link":"{{site.baseurl}}/kr-exercises/ex_29"},
{"label":"buying-exercise", "value":"12.30","link":"{{site.baseurl}}/kr-exercises/ex_30"},
{"label":"sum-to-1-exercise", "value":"13.2","link":"{{site.baseurl}}/probability-exercises/ex_2"},
{"label":"exclusive-exhaustive-exercise", "value":"13.5","link":"{{site.baseurl}}/probability-exercises/ex_5"},
{"label":"inclusion-exclusion-exercise", "value":"13.6","link":"{{site.baseurl}}/probability-exercises/ex_6"},
{"label":"unfinished-game-exercise", "value":"13.10","link":"{{site.baseurl}}/probability-exercises/ex_10"},
{"label":"independence-exercise", "value":"13.15","link":"{{site.baseurl}}/probability-exercises/ex_15"},
{"label":"conditional-bayes-exercise", "value":"13.20","link":"{{site.baseurl}}/probability-exercises/ex_20"},
{"label":"pv-xyz-exercise", "value":"13.21","link":"{{site.baseurl}}/probability-exercises/ex_21"},
{"label":"normalization-exercise", "value":"13.23","link":"{{site.baseurl}}/probability-exercises/ex_23"},
{"label":"naive-bayes-retrieval-exercise", "value":"13.28","link":"{{site.baseurl}}/probability-exercises/ex_28"},
{"label":"cpt-equivalence-exercise", "value":"14.3","link":"{{site.baseurl}}/bayes-nets-exercises/ex_3"},
{"label":"handedness-exercise", "value":"14.7","link":"{{site.baseurl}}/bayes-nets-exercises/ex_7"},
{"label":"markov-blanket-exercise", "value":"14.8","link":"{{site.baseurl}}/bayes-nets-exercises/ex_8"},
{"label":"LG-exercise", "value":"14.11","link":"{{site.baseurl}}/bayes-nets-exercises/ex_11"},
{"label":"multivalued-probit-exercise", "value":"14.12","link":"{{site.baseurl}}/bayes-nets-exercises/ex_12"},
{"label":"VE-exercise", "value":"14.18","link":"{{site.baseurl}}/bayes-nets-exercises/ex_18"},
{"label":"bn-complexity-exercise", "value":"14.19","link":"{{site.baseurl}}/bayes-nets-exercises/ex_19"},
{"label":"primitive-sampling-exercise", "value":"14.20","link":"{{site.baseurl}}/bayes-nets-exercises/ex_20"},
{"label":"gibbs-proof-exercise", "value":"14.22","link":"{{site.baseurl}}/bayes-nets-exercises/ex_22"},
{"label":"MH-exercise", "value":"14.23","link":"{{site.baseurl}}/bayes-nets-exercises/ex_23"},
{"label":"soccer-rpm-exercise", "value":"14.24","link":"{{site.baseurl}}/bayes-nets-exercises/ex_24"},
{"label":"state-augmentation-exercise", "value":"15.1","link":"{{site.baseurl}}/dbn-exercises/ex_1"},
{"label":"markov-convergence-exercise", "value":"15.2","link":"{{site.baseurl}}/dbn-exercises/ex_2"},
{"label":"island-exercise", "value":"15.3","link":"{{site.baseurl}}/dbn-exercises/ex_3"},
{"label":"flawed-viterbi-exercise", "value":"15.4","link":"{{site.baseurl}}/dbn-exercises/ex_4"},
{"label":"hmm-likelihood-exercise", "value":"15.5","link":"{{site.baseurl}}/dbn-exercises/ex_5"},
{"label":"roomba-viterbi-exercise", "value":"15.8","link":"{{site.baseurl}}/dbn-exercises/ex_8"},
{"label":"switching-kf-exercise", "value":"15.12","link":"{{site.baseurl}}/dbn-exercises/ex_12"},
{"label":"kalman-update-exercise", "value":"15.13","link":"{{site.baseurl}}/dbn-exercises/ex_13"},
{"label":"kalman-variance-exercise", "value":"15.14","link":"{{site.baseurl}}/dbn-exercises/ex_14"},
{"label":"battery-sequence-exercise", "value":"15.19","link":"{{site.baseurl}}/dbn-exercises/ex_19"},
{"label":"dbn-elimination-exercise", "value":"15.20","link":"{{site.baseurl}}/dbn-exercises/ex_20"},
{"label":"almanac-game", "value":"16.1","link":"{{site.baseurl}}/decision-theory-exercises/ex_1"},
{"label":"St-Petersburg-exercise", "value":"16.4","link":"{{site.baseurl}}/decision-theory-exercises/ex_4"},
{"label":"surprise-candy-exercise", "value":"16.6","link":"{{site.baseurl}}/decision-theory-exercises/ex_6"},
{"label":"kmax-exercise", "value":"16.13","link":"{{site.baseurl}}/decision-theory-exercises/ex_13"},
{"label":"car-vpi-exercise", "value":"16.22","link":"{{site.baseurl}}/decision-theory-exercises/ex_22"},
{"label":"nonnegative-VPI-exercise", "value":"16.23","link":"{{site.baseurl}}/decision-theory-exercises/ex_23"},
{"label":"mdp-model-exercise", "value":"17.1","link":"{{site.baseurl}}/complex-decisions-exercises/ex_1"},
{"label":"nonseparable-exercise", "value":"17.4","link":"{{site.baseurl}}/complex-decisions-exercises/ex_4"},
{"label":"reward-equivalence-exercise", "value":"17.6","link":"{{site.baseurl}}/complex-decisions-exercises/ex_6"},
{"label":"threshold-cost-exercise", "value":"17.7","link":"{{site.baseurl}}/complex-decisions-exercises/ex_7"},
{"label":"vi-contraction-exercise", "value":"17.8","link":"{{site.baseurl}}/complex-decisions-exercises/ex_8"},
{"label":"3x3-mdp-exercise", "value":"17.10","link":"{{site.baseurl}}/complex-decisions-exercises/ex_10"},
{"label":"101x3-mdp-exercise", "value":"17.11","link":"{{site.baseurl}}/complex-decisions-exercises/ex_11"},
{"label":"policy-loss-exercise", "value":"17.14","link":"{{site.baseurl}}/complex-decisions-exercises/ex_14"},
{"label":"4x3-pomdp-exercise", "value":"17.15","link":"{{site.baseurl}}/complex-decisions-exercises/ex_15"},
{"label":"2state-pomdp-exercise", "value":"17.17","link":"{{site.baseurl}}/complex-decisions-exercises/ex_17"},
{"label":"dominant-equilibrium-exercise", "value":"17.18","link":"{{site.baseurl}}/complex-decisions-exercises/ex_18"},
{"label":"infant-language-exercise", "value":"18.1","link":"{{site.baseurl}}/concept-learning-exercises/ex_1"},
{"label":"leaf-classification-exercise", "value":"18.6","link":"{{site.baseurl}}/concept-learning-exercises/ex_6"},
{"label":"nonnegative-gain-exercise", "value":"18.7","link":"{{site.baseurl}}/concept-learning-exercises/ex_7"},
{"label":"pruning-DTL-exercise", "value":"18.11","link":"{{site.baseurl}}/concept-learning-exercises/ex_11"},
{"label":"missing-value-DTL-exercise", "value":"18.12","link":"{{site.baseurl}}/concept-learning-exercises/ex_12"},
{"label":"gain-ratio-DTL-exercise", "value":"18.13","link":"{{site.baseurl}}/concept-learning-exercises/ex_13"},
{"label":"DL-expressivity-exercise", "value":"18.18","link":"{{site.baseurl}}/concept-learning-exercises/ex_18"},
{"label":"knn-mean-mode", "value":"18.19","link":"{{site.baseurl}}/concept-learning-exercises/ex_19"},
{"label":"svm-ellipse-exercise", "value":"18.21","link":"{{site.baseurl}}/concept-learning-exercises/ex_21"},
{"label":"svm-exercise", "value":"18.22","link":"{{site.baseurl}}/concept-learning-exercises/ex_22"},
{"label":"ensemble-error-exercise", "value":"18.23","link":"{{site.baseurl}}/concept-learning-exercises/ex_23"},
{"label":"linear-separability-exercise", "value":"18.26","link":"{{site.baseurl}}/concept-learning-exercises/ex_26"},
{"label":"perceptron-ML-gradient-exercise)", "value":"18.28","link":"{{site.baseurl}}/concept-learning-exercises/ex_28"},
{"label":"linear-nn-exercise", "value":"18.29","link":"{{site.baseurl}}/concept-learning-exercises/ex_29"},
{"label":"embedding-separability-exercise", "value":"18.33","link":"{{site.baseurl}}/concept-learning-exercises/ex_33"},
{"label":"dbsig-exercise", "value":"19.1","link":"{{site.baseurl}}/ilp-exercises/ex_1"},
{"label":"ir-step-exercise", "value":"19.5","link":"{{site.baseurl}}/ilp-exercises/ex_5"},
{"label":"prolog-ir-exercise", "value":"19.6","link":"{{site.baseurl}}/ilp-exercises/ex_6"},
{"label":"foil-literals-exercise", "value":"19.7","link":"{{site.baseurl}}/ilp-exercises/ex_7"},
{"label":"bayes-candy-exercise", "value":"20.1","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_1"},
{"label":"candy-trade-exercise", "value":"20.3","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_3"},
{"label":"BNB-exercise", "value":"20.5","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_5"},
{"label":"linear-regression-exercise", "value":"20.6","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_6"},
{"label":"noisy-OR-ML-exercise", "value":"20.7","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_7"},
{"label":"beta-integration-exercise", "value":"20.8","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_8"},
{"label":"ML-parents-exercise", "value":"20.9","link":"{{site.baseurl}}/bayesian-learning-exercises/ex_9"},
{"label":"prioritized-sweeping-exercise", "value":"21.3","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_3"},
{"label":"approx-LMS-exercise", "value":"21.7","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_7"},
{"label":"10x10-exercise", "value":"21.10","link":"{{site.baseurl}}/reinforcement-learning-exercises/ex_10"},
{"label":"washing-clothes-exercise", "value":"23.1","link":"{{site.baseurl}}/nlp-english-exercises/ex_1"},
{"label":"chomsky-form-exercise", "value":"23.10","link":"{{site.baseurl}}/nlp-english-exercises/ex_10"},
{"label":"exercise-subj-verb-agree", "value":"23.12","link":"{{site.baseurl}}/nlp-english-exercises/ex_12"},
{"label":"washing-clothes2-exercise", "value":"23.17","link":"{{site.baseurl}}/nlp-english-exercises/ex_17"},
{"label":"mcl-biasdness-exercise", "value":"25.1","link":"{{site.baseurl}}/robotics-exercises/ex_1"},
{"label":"mcl-implement-exercise", "value":"25.2","link":"{{site.baseurl}}/robotics-exercises/ex_2"},
{"label":"AB-manipulator-ex", "value":"25.3","link":"{{site.baseurl}}/robotics-exercises/ex_3"},
{"label":"inverse-kinematics-exercise", "value":"25.5","link":"{{site.baseurl}}/robotics-exercises/ex_5"},
{"label":"voronoi-exercise", "value":"25.7","link":"{{site.baseurl}}/robotics-exercises/ex_7"},
{"label":"confspace-exercise", "value":"25.8","link":"{{site.baseurl}}/robotics-exercises/ex_8"},
{"label":"robot-exploration-exercise", "value":"25.10","link":"{{site.baseurl}}/robotics-exercises/ex_10"},
{"label":"subsumption-exercise", "value":"25.11","link":"{{site.baseurl}}/robotics-exercises/ex_11"},
{"label":"human-robot-exercise", "value":"25.12","link":"{{site.baseurl}}/robotics-exercises/ex_12"},
{"label":"brain-prosthesis-exercise)", "value":"26.5","link":"{{site.baseurl}}/philosophy-exercises/ex_5"}
]
,
"insideBookFigRef":[
{"label":"computer-brain-table", "value":"1.3"},
{"label":"vacuum-agent-function-table" ,"value":"2.3"},
{"label":"vacuum-world-figure" ,"value":"2.8"},
{"label":"and-or-graph-search-algorithm" ,"value":"4.11"},
{"label":"breadth-first-search-algorithm" ,"value":"3.11"},
{"label":"vacuum2-sets-figure" ,"value":"4.14"},
{"label":"maze-3x3-figure" ,"value":"4.19"},
{"label":"geometric-scene-figure" ,"value":"3.31"},
{"label":"australia-figure", "value":"6.1"},
{"label":"cryptarithmetic-figure", "value":"6.2"},
{"label":"tree-csp-figure", "value":"6.10"},
{"label":"wumpus-seq35-figure", "value":"7.4"},
{"label":"wumpus-entailment-figure", "value":"7.5"},
{"label":"logical-equivalence-table", "value":"7.11"},
{"label":"pl-horn-example-figure", "value":"7.16"},
{"label":"subsumption-lattice-figure", "value":"9.2"},
{"label":"backward-chaining-algorithm","value":"9.6"},
{"label":"airport-pddl-algorithm", "value":"10.1"},
{"label":"sussman-anomaly-figure", "value":"10.4"},
{"label":"satplan-agent-algorithm", "value":"7.22"},
{"label":"jobshop-cpm-figure", "value":"11.2"},
{"label":"ontology-figure", "value":"12.1"},
{"label":"de-finetti-table", "value":"13.2"},
{"label":"dentist-joint-table", "value":"13.3"},
{"label":"hybrid-wumpus-agent-algorithm", "value":"7.20"},
{"label":"burglary-figure", "value":"14.2"},
{"label":"enumeration-algorithm", "value":"14.22"},
{"label":"elimination-ask-algorithm", "value":"14.11"},
{"label":"rain-clustering-figure", "value":"14.12"},
{"label":"sequential-decision-world-figure", "value":"15.4"},
{"label":"sequential-decision-policies-figure", "value":"17.2"},
{"label":"DTL-algorithm", "value":"18.5"},
{"label":"restaurant-back-prop-figure", "value":"18.25"},
{"label":"family2-figure", "value":"19.11"},
{"label":"bayes-candy-figure", "value":"20.1"},
{"label":"mt-alignment-figure", "value":"23.13"},
{"label":"sr-hmm-figure", "value":"23.16"},
{"label":"illuminationfigure", "value":"24.4"},
{"label":"FigArm1", "value":"25.14"},
{"label":"vacuum-maze-ch4-figure","value":"4.18"},
{"label":"vacuum-maze-hmm2-figure","value":"15.7"},
{"label":"battery-persistence-figure", "value":"15.15"},
{"label":"airport-au-id-figure", "value":"16.7"},
{"label":"airport-id-figure", "value":"16.6"},
{"label":"line-game4-figure", "value":"5.17"},
{"label":"mixture-networks-figure","value":"20.11"},
{"label":"forward-backward-algorithm","value":"8.2"}
]
,
"chapterRef":[
{"label":"search-chapter","value":"Solving Problems by Searching"},
{"label":"csp-chapter","value":"Constraint Satisfaction Problems"},
{"label":"nlp1-chapter","value":"Natural Language for Communication"},
{"label":"nlp-english-chapter","value":"Natural Language Processing"},
{"label":"game-playing-chapter","value":"Adversarial Search"},
{"label":"concept-learning-chapter","value":"Learning From Examples"},
{"label":"complex-decisions-chapter","value":"Making Complex Decisions"},
{"label":"agents-chapter","value":"Logical Agents"},
{"label":"intro-chapter","value":"Introduction"},
{"label":"agents-chapter","value":"Intelligent Agents"},
{"label":"advanced-search-chapter","value":"Beyond Classical Search"},
{"label":"fol-chapter","value":"First Order Logic"},
{"label":"logical-inference-chapter","value":"Inference in first Order Logic"},
{"label":"planning-chapter","value":"Classical Planning"},
{"label":"advanced-planning-chapter","value":"Planning and Acting In The Real World"},
{"label":"kr-chapter","value":"Knowledge Representation"},
{"label":"probability-chapter","value":"Quantifying Uncertainity"},
{"label":"bayes-nets-chapter","value":"Probabilistic Reasoning"},
{"label":"dbn-chapter","value":"Probabilistic Reasoning Over Time"},
{"label":"decision-theory-chapter","value":"Making simple Decisions"},
{"label":"philosophy-chapter","value":"Philosophical Foundations"},
{"label":"ilp-chapter","value":"Knowledge in Learning"},
{"label":"bayesian-learning-chapter","value":"Learning Probabilistic Models"},
{"label":"reinforcement-learning-chapter","value":"Reinforcement Learning"},
{"label":"perception-chapter","value":"Perception"},
{"label":"robotics-chapter","value":"Robotics"}
]
,
"equationRef":[
{"label":"pit-biconditional-equation","value":""},
{"label":"kolmogorov-disjunction-equation", "value":""},
{"label":"basic-probability-axiom-equation", "value":""},
{"label":"proposition-probability-equation", "value":""},
{"label":"independence-equation", "value":""},
{"label":"conditional-bayes-equation", "value":""},
{"label":"meningitis-bayes-equation", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"conditional-probability-equation", "value":""},
{"label":"marginalization-equation", "value":""},
{"label":"parameter-joint-repn-equation", "value":""},
{"label":"markov-blanket-equation", "value":""},
{"label":"matrix-filtering-equation", "value":""},
{"label":"forward-likelihood-equation", "value":""},
{"label":"kalman-one-step-equation", "value":""},
{"label":"kalman-univariate-equation", "value":""},
{"label":"vi-contraction-equation", "value":""},
{"label":"linear-gaussian-likelihood-equation", "value":""},
{"label":"beta-equation", "value":""},
{"label":"candy-true-equation", "value":""},
{"label":"candy-64-equation", "value":""},
{"label":"4x3-linear-approx-equation", "value":""},
{"label":"generalized-td-equation", "value":""},
{"label":"4x3-linear-approx-equation", "value":""}
]
,
"insideExerciseFigRef":[
{"label":"line-game4-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#line-game4-figure"},
{"label":"3candy-figure","value":"","link":"{{site.baseurl}}/decision-theory-exercises/#3candy-figure"},
{"label":"alpha-beta-proof-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#alpha-beta-proof-figure"},
{"label":"and-or-graph-search-algorithm-figure","value":"","link":"{{site.baseurl}}/"},
{"label":"trivial-chance-game-figure","value":"","link":"{{site.baseurl}}/game-playing-exercises/#trivial-chance-game-figure"},
{"label":"family1-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#family1-figure"},
{"label":"4bit-adder-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#4bit-adder-figure"},
{"label":"adder-figure","value":"","link":"{{site.baseurl}}/fol-exercises/#4bit-adder-figure"},
{"label":"shakey-figure","value":"","link":"{{site.baseurl}}/planning-exercises/#shakey-figure"},
{"label":"handedness-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#handedness-figure"},
{"label":"car-starts-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#car-starts-figure"},
{"label":"telescope-nets-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#telescope-nets-figure"},
{"label":"politics-figure","value":"","link":"{{site.baseurl}}/bayes-nets-exercises/#politics-figure"},
{"label":"switching-kf-figure","value":"","link":"{{site.baseurl}}/dbn-exercises/#switching-kf-figure"},
{"label":"grid-mdp-figure","value":"","link":"{{site.baseurl}}/complex-decisions-exercises/#grid-mdp-figure"},
{"label":"bottle-figure","value":"","link":"{{site.baseurl}}/perception-exercises/#bottle-figure"},
{"label":"figRobot2","value":"","link":"{{site.baseurl}}/robotics-exercises/#figRobot2"},
{"label":"FigEx3","value":"","link":"{{site.baseurl}}/robotics-exercises/#FigEx2"},
{"label":"Fig5","value":"","link":"{{site.baseurl}}/robotics-exercises/#FigEx3"}
]
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。