代码拉取完成,页面将自动刷新
同步操作将从 ynbstyj/cnn-lstm-bilstm-deepcnn-clstm-in-pytorch 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# coding=utf-8
# @Author : bamtercelboo
# @Datetime : 2018/07/19 22:35
# @File : train_ALL_CNN.py
# @Last Modify Time : 2018/07/19 22:35
# @Contact : bamtercelboo@{gmail.com, 163.com}
import os
import sys
import torch
import torch.autograd as autograd
import torch.nn.functional as F
import torch.nn.utils as utils
import torch.optim.lr_scheduler as lr_scheduler
import shutil
import random
from DataUtils.Common import seed_num
torch.manual_seed(seed_num)
random.seed(seed_num)
def train(train_iter, dev_iter, test_iter, model, args):
if args.cuda:
model.cuda()
if args.Adam is True:
print("Adam Training......")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
elif args.SGD is True:
print("SGD Training.......")
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay,
momentum=args.momentum_value)
elif args.Adadelta is True:
print("Adadelta Training.......")
optimizer = torch.optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
steps = 0
epoch_step = 0
model_count = 0
best_accuracy = Best_Result()
model.train()
for epoch in range(1, args.epochs+1):
steps = 0
print("\n## The {} Epoch, All {} Epochs ! ##".format(epoch, args.epochs))
for batch in train_iter:
feature, target = batch.text, batch.label
feature.data.t_(), target.data.sub_(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
optimizer.zero_grad()
# model.zero_grad()
logit = model(feature)
loss = F.cross_entropy(logit, target)
loss.backward()
if args.init_clip_max_norm is not None:
utils.clip_grad_norm_(model.parameters(), max_norm=args.init_clip_max_norm)
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
train_size = len(train_iter.dataset)
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = float(corrects)/batch.batch_size * 100.0
sys.stdout.write(
'\rBatch[{}/{}] - loss: {:.6f} acc: {:.4f}%({}/{})'.format(steps,
train_size,
loss.item(),
accuracy,
corrects,
batch.batch_size))
if steps % args.test_interval == 0:
print("\nDev Accuracy: ", end="")
eval(dev_iter, model, args, best_accuracy, epoch, test=False)
print("Test Accuracy: ", end="")
eval(test_iter, model, args, best_accuracy, epoch, test=True)
if steps % args.save_interval == 0:
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
save_prefix = os.path.join(args.save_dir, 'snapshot')
save_path = '{}_steps{}.pt'.format(save_prefix, steps)
torch.save(model.state_dict(), save_path)
if os.path.isfile(save_path) and args.rm_model is True:
os.remove(save_path)
model_count += 1
return model_count
def eval(data_iter, model, args, best_accuracy, epoch, test=False):
model.eval()
corrects, avg_loss = 0, 0
for batch in data_iter:
feature, target = batch.text, batch.label
feature.data.t_(), target.data.sub_(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
logit = model(feature)
loss = F.cross_entropy(logit, target)
avg_loss += loss.item()
corrects += (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
size = len(data_iter.dataset)
avg_loss = loss.item()/size
accuracy = 100.0 * float(corrects)/size
model.train()
print(' Evaluation - loss: {:.6f} acc: {:.4f}%({}/{})'.format(avg_loss, accuracy, corrects, size))
if test is False:
if accuracy >= best_accuracy.best_dev_accuracy:
best_accuracy.best_dev_accuracy = accuracy
best_accuracy.best_epoch = epoch
best_accuracy.best_test = True
if test is True and best_accuracy.best_test is True:
best_accuracy.accuracy = accuracy
if test is True:
print("The Current Best Dev Accuracy: {:.4f}, and Test Accuracy is :{:.4f}, locate on {} epoch.\n".format(
best_accuracy.best_dev_accuracy, best_accuracy.accuracy, best_accuracy.best_epoch))
if test is True:
best_accuracy.best_test = False
class Best_Result:
def __init__(self):
self.best_dev_accuracy = -1
self.best_accuracy = -1
self.best_epoch = 1
self.best_test = False
self.accuracy = -1
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。