代码拉取完成,页面将自动刷新
Package: forecastML
Type: Package
Title: Time Series Forecasting with Machine Learning Methods
Version: 0.9.1
Author: Nickalus Redell
Maintainer: Nickalus Redell <nickalusredell@gmail.com>
Description: The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" <doi:10.1016/j.csda.2017.11.003>.
License: MIT + file LICENSE
URL: https://github.com/nredell/forecastML/
Encoding: UTF-8
LazyData: true
Imports:
tidyr (>= 0.8.1),
rlang (>= 0.4.0),
magrittr (>= 1.5),
lubridate (>= 1.7.4),
ggplot2 (>= 3.1.0),
future.apply (>= 1.3.0),
methods,
purrr (>= 0.3.2),
data.table (>= 1.12.6),
dtplyr (>= 1.0.0),
tibble (>= 2.1.3)
RoxygenNote: 7.1.0
Collate:
'fill_gaps.R'
'create_windows.R'
'create_skeleton.R'
'combine_forecasts.R'
'lagged_df.R'
'return_error.R'
'return_hyper.R'
'train_model.R'
'reconcile_forecasts.R'
'calculate_intervals.R'
'data_seatbelts.R'
'data_buoy.R'
'data_buoy_gaps.R'
'zzz.R'
Depends:
R (>= 3.5.0),
dplyr (>= 0.8.3)
Suggests:
glmnet (>= 2.0.16),
DT (>= 0.5),
knitr (>= 1.22),
rmarkdown (>= 1.12.6),
xgboost (>= 0.82.1),
randomForest (>= 4.6.14),
testthat (>= 2.2.1),
covr (>= 3.3.1),
reticulate (>= 1.15)
VignetteBuilder: knitr
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。