加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
computational_graph_lstm.py 2.72 KB
一键复制 编辑 原始数据 按行查看 历史
#-*- coding:utf-8 -*
import tensorflow as tf
from LSTM_captcha.config import *
def computational_graph_lstm(x, y, batch_size = batch_size):
#weights and biases of appropriate shape to accomplish above task
out_weights = tf.Variable(tf.random_normal([num_units,n_classes]), name = 'out_weight')
out_bias = tf.Variable(tf.random_normal([n_classes]),name = 'out_bias')
#构建网络
lstm_layer = [tf.nn.rnn_cell.LSTMCell(num_units, state_is_tuple=True) for _ in range(layer_num)] #创建两层的lstm
mlstm_cell = tf.nn.rnn_cell.MultiRNNCell(lstm_layer, state_is_tuple = True) #将lstm连接在一起
init_state = mlstm_cell.zero_state(batch_size, tf.float32) #cell的初始状态
outputs = list() #每个cell的输出
state = init_state
with tf.variable_scope('RNN'):
for timestep in range(time_steps):
if timestep > 0:
tf.get_variable_scope().reuse_variables()
(cell_output, state) = mlstm_cell(x[:, timestep, :], state) # 这里的state保存了每一层 LSTM 的状态
outputs.append(cell_output)
# h_state = outputs[-1] #取最后一个cell输出
#计算输出层的第一个元素
prediction_1 = tf.nn.softmax(tf.matmul(outputs[-4],out_weights)+out_bias) #获取最后time-step的输出,使用全连接, 得到第一个验证码输出结果
#计算输出层的第二个元素
prediction_2 = tf.nn.softmax(tf.matmul(outputs[-3],out_weights)+out_bias) #输出第二个验证码预测结果
#计算输出层的第三个元素
prediction_3 = tf.nn.softmax(tf.matmul(outputs[-2],out_weights)+out_bias) #输出第三个验证码预测结果
#计算输出层的第四个元素
prediction_4 = tf.nn.softmax(tf.matmul(outputs[-1],out_weights)+out_bias) #输出第四个验证码预测结果,size:[batch,num_class]
#输出连接
prediction_all = tf.concat([prediction_1, prediction_2, prediction_3, prediction_4],1) # 4 * [batch, num_class] => [batch, 4 * num_class]
prediction_all = tf.reshape(prediction_all,[batch_size, captcha_num, n_classes],name ='prediction_merge') # [4, batch, num_class] => [batch, 4, num_class]
#loss_function
loss = -tf.reduce_mean(y * tf.log(prediction_all),name = 'loss')
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction_all,labels=y))
#optimization
opt = tf.train.AdamOptimizer(learning_rate=learning_rate, name = 'opt').minimize(loss)
#model evaluation
pre_arg = tf.argmax(prediction_all,2,name = 'predict')
y_arg = tf.argmax(y,2)
correct_prediction = tf.equal(pre_arg, y_arg)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32),name = 'accuracy')
return opt, loss, accuracy, pre_arg, y_arg
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化