克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
BSD-3-Clause

Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)

Paper | Project Page | Video

google colab logo Hugging Face Replicate OpenXLab Visitors

Shangchen Zhou, Kelvin C.K. Chan, Chongyi Li, Chen Change Loy

S-Lab, Nanyang Technological University

If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs:

Update

  • 2023.07.20: Integrated to OpenXLab. Try out online demo! OpenXLab
  • 2023.04.19: Training codes and config files are public available now.
  • 2023.04.09: Add features of inpainting and colorization for cropped and aligned face images.
  • 2023.02.10: Include dlib as a new face detector option, it produces more accurate face identity.
  • 2022.10.05: Support video input --input_path [YOUR_VIDEO.mp4]. Try it to enhance your videos!
  • 2022.09.14: Integrated to :hugs: Hugging Face. Try out online demo! Hugging Face
  • 2022.09.09: Integrated to Replicate. Try out online demo! Replicate
  • More

TODO

  • Add training code and config files
  • Add checkpoint and script for face inpainting
  • Add checkpoint and script for face colorization
  • Add background image enhancement

Try Enhancing Old Photos / Fixing AI-arts

Face Restoration

Face Color Enhancement and Restoration

Face Inpainting

Dependencies and Installation

  • Pytorch >= 1.7.1
  • CUDA >= 10.1
  • Other required packages in requirements.txt
# git clone this repository
git clone https://github.com/sczhou/CodeFormer
cd CodeFormer

# create new anaconda env
conda create -n codeformer python=3.8 -y
conda activate codeformer

# install python dependencies
pip3 install -r requirements.txt
python basicsr/setup.py develop
conda install -c conda-forge dlib (only for face detection or cropping with dlib)

Quick Inference

Download Pre-trained Models:

Download the facelib and dlib pretrained models from [Releases | Google Drive | OneDrive] to the weights/facelib folder. You can manually download the pretrained models OR download by running the following command:

python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py dlib (only for dlib face detector)

Download the CodeFormer pretrained models from [Releases | Google Drive | OneDrive] to the weights/CodeFormer folder. You can manually download the pretrained models OR download by running the following command:

python scripts/download_pretrained_models.py CodeFormer

Prepare Testing Data:

You can put the testing images in the inputs/TestWhole folder. If you would like to test on cropped and aligned faces, you can put them in the inputs/cropped_faces folder. You can get the cropped and aligned faces by running the following command:

# you may need to install dlib via: conda install -c conda-forge dlib
python scripts/crop_align_face.py -i [input folder] -o [output folder]

Testing:

[Note] If you want to compare CodeFormer in your paper, please run the following command indicating --has_aligned (for cropped and aligned face), as the command for the whole image will involve a process of face-background fusion that may damage hair texture on the boundary, which leads to unfair comparison.

Fidelity weight w lays in [0, 1]. Generally, smaller w tends to produce a higher-quality result, while larger w yields a higher-fidelity result. The results will be saved in the results folder.

🧑🏻 Face Restoration (cropped and aligned face)

# For cropped and aligned faces (512x512)
python inference_codeformer.py -w 0.5 --has_aligned --input_path [image folder]|[image path]

:framed_picture: Whole Image Enhancement

# For whole image
# Add '--bg_upsampler realesrgan' to enhance the background regions with Real-ESRGAN
# Add '--face_upsample' to further upsample restorated face with Real-ESRGAN
python inference_codeformer.py -w 0.7 --input_path [image folder]|[image path]

Video Enhancement

# For Windows/Mac users, please install ffmpeg first
conda install -c conda-forge ffmpeg
# For video clips
# Video path should end with '.mp4'|'.mov'|'.avi'
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [video path]

🌈 Face Colorization (cropped and aligned face)

# For cropped and aligned faces (512x512)
# Colorize black and white or faded photo
python inference_colorization.py --input_path [image folder]|[image path]

🎨 Face Inpainting (cropped and aligned face)

# For cropped and aligned faces (512x512)
# Inputs could be masked by white brush using an image editing app (e.g., Photoshop) 
# (check out the examples in inputs/masked_faces)
python inference_inpainting.py --input_path [image folder]|[image path]

Training:

The training commands can be found in the documents: English | 简体中文.

Citation

If our work is useful for your research, please consider citing:

@inproceedings{zhou2022codeformer,
    author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
    title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
    booktitle = {NeurIPS},
    year = {2022}
}

License

This project is licensed under NTU S-Lab License 1.0. Redistribution and use should follow this license.

Acknowledgement

This project is based on BasicSR. Some codes are brought from Unleashing Transformers, YOLOv5-face, and FaceXLib. We also adopt Real-ESRGAN to support background image enhancement. Thanks for their awesome works.

Contact

If you have any questions, please feel free to reach me out at shangchenzhou@gmail.com.

S-Lab License 1.0 Copyright 2022 S-Lab Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work.

简介

暂无描述 展开 收起
Python 等 3 种语言
BSD-3-Clause
取消

发行版

暂无发行版

贡献者

全部

近期动态

不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化