代码拉取完成,页面将自动刷新
同步操作将从 openKylin/pillow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from PIL import Image
from .helper import PillowTestCase, cached_property
class TestImagingPaste(PillowTestCase):
masks = {}
size = 128
def assert_9points_image(self, im, expected):
expected = [
point[0] if im.mode == "L" else point[: len(im.mode)] for point in expected
]
px = im.load()
actual = [
px[0, 0],
px[self.size // 2, 0],
px[self.size - 1, 0],
px[0, self.size // 2],
px[self.size // 2, self.size // 2],
px[self.size - 1, self.size // 2],
px[0, self.size - 1],
px[self.size // 2, self.size - 1],
px[self.size - 1, self.size - 1],
]
self.assertEqual(actual, expected)
def assert_9points_paste(self, im, im2, mask, expected):
im3 = im.copy()
im3.paste(im2, (0, 0), mask)
self.assert_9points_image(im3, expected)
# Abbreviated syntax
im.paste(im2, mask)
self.assert_9points_image(im, expected)
@cached_property
def mask_1(self):
mask = Image.new("1", (self.size, self.size))
px = mask.load()
for y in range(mask.height):
for x in range(mask.width):
px[y, x] = (x + y) % 2
return mask
@cached_property
def mask_L(self):
return self.gradient_L.transpose(Image.ROTATE_270)
@cached_property
def gradient_L(self):
gradient = Image.new("L", (self.size, self.size))
px = gradient.load()
for y in range(gradient.height):
for x in range(gradient.width):
px[y, x] = (x + y) % 255
return gradient
@cached_property
def gradient_RGB(self):
return Image.merge(
"RGB",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
],
)
@cached_property
def gradient_RGBA(self):
return Image.merge(
"RGBA",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
self.gradient_L.transpose(Image.ROTATE_270),
],
)
@cached_property
def gradient_RGBa(self):
return Image.merge(
"RGBa",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
self.gradient_L.transpose(Image.ROTATE_270),
],
)
def test_image_solid(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "red")
im2 = getattr(self, "gradient_" + mode)
im.paste(im2, (12, 23))
im = im.crop((12, 23, im2.width + 12, im2.height + 23))
self.assert_image_equal(im, im2)
def test_image_mask_1(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "white")
im2 = getattr(self, "gradient_" + mode)
self.assert_9points_paste(
im,
im2,
self.mask_1,
[
(255, 255, 255, 255),
(255, 255, 255, 255),
(127, 254, 127, 0),
(255, 255, 255, 255),
(255, 255, 255, 255),
(191, 190, 63, 64),
(127, 0, 127, 254),
(191, 64, 63, 190),
(255, 255, 255, 255),
],
)
def test_image_mask_L(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "white")
im2 = getattr(self, "gradient_" + mode)
self.assert_9points_paste(
im,
im2,
self.mask_L,
[
(128, 191, 255, 191),
(208, 239, 239, 208),
(255, 255, 255, 255),
(112, 111, 206, 207),
(192, 191, 191, 191),
(239, 239, 207, 207),
(128, 1, 128, 254),
(207, 113, 112, 207),
(255, 191, 128, 191),
],
)
def test_image_mask_RGBA(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "white")
im2 = getattr(self, "gradient_" + mode)
self.assert_9points_paste(
im,
im2,
self.gradient_RGBA,
[
(128, 191, 255, 191),
(208, 239, 239, 208),
(255, 255, 255, 255),
(112, 111, 206, 207),
(192, 191, 191, 191),
(239, 239, 207, 207),
(128, 1, 128, 254),
(207, 113, 112, 207),
(255, 191, 128, 191),
],
)
def test_image_mask_RGBa(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "white")
im2 = getattr(self, "gradient_" + mode)
self.assert_9points_paste(
im,
im2,
self.gradient_RGBa,
[
(128, 255, 126, 255),
(0, 127, 126, 255),
(126, 253, 126, 255),
(128, 127, 254, 255),
(0, 255, 254, 255),
(126, 125, 254, 255),
(128, 1, 128, 255),
(0, 129, 128, 255),
(126, 255, 128, 255),
],
)
def test_color_solid(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), "black")
rect = (12, 23, 128 + 12, 128 + 23)
im.paste("white", rect)
hist = im.crop(rect).histogram()
while hist:
head, hist = hist[:256], hist[256:]
self.assertEqual(head[255], 128 * 128)
self.assertEqual(sum(head[:255]), 0)
def test_color_mask_1(self):
for mode in ("RGBA", "RGB", "L"):
im = Image.new(mode, (200, 200), (50, 60, 70, 80)[: len(mode)])
color = (10, 20, 30, 40)[: len(mode)]
self.assert_9points_paste(
im,
color,
self.mask_1,
[
(50, 60, 70, 80),
(50, 60, 70, 80),
(10, 20, 30, 40),
(50, 60, 70, 80),
(50, 60, 70, 80),
(10, 20, 30, 40),
(10, 20, 30, 40),
(10, 20, 30, 40),
(50, 60, 70, 80),
],
)
def test_color_mask_L(self):
for mode in ("RGBA", "RGB", "L"):
im = getattr(self, "gradient_" + mode).copy()
color = "white"
self.assert_9points_paste(
im,
color,
self.mask_L,
[
(127, 191, 254, 191),
(111, 207, 206, 110),
(127, 254, 127, 0),
(207, 207, 239, 239),
(191, 191, 190, 191),
(207, 206, 111, 112),
(254, 254, 254, 255),
(239, 206, 206, 238),
(254, 191, 127, 191),
],
)
def test_color_mask_RGBA(self):
for mode in ("RGBA", "RGB", "L"):
im = getattr(self, "gradient_" + mode).copy()
color = "white"
self.assert_9points_paste(
im,
color,
self.gradient_RGBA,
[
(127, 191, 254, 191),
(111, 207, 206, 110),
(127, 254, 127, 0),
(207, 207, 239, 239),
(191, 191, 190, 191),
(207, 206, 111, 112),
(254, 254, 254, 255),
(239, 206, 206, 238),
(254, 191, 127, 191),
],
)
def test_color_mask_RGBa(self):
for mode in ("RGBA", "RGB", "L"):
im = getattr(self, "gradient_" + mode).copy()
color = "white"
self.assert_9points_paste(
im,
color,
self.gradient_RGBa,
[
(255, 63, 126, 63),
(47, 143, 142, 46),
(126, 253, 126, 255),
(15, 15, 47, 47),
(63, 63, 62, 63),
(142, 141, 46, 47),
(255, 255, 255, 0),
(48, 15, 15, 47),
(126, 63, 255, 63),
],
)
def test_different_sizes(self):
im = Image.new("RGB", (100, 100))
im2 = Image.new("RGB", (50, 50))
im.copy().paste(im2)
im.copy().paste(im2, (0, 0))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。