代码拉取完成,页面将自动刷新
同步操作将从 openKylin/pillow 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from PIL import Image, ImageMath, ImageMode
from .helper import PillowTestCase, convert_to_comparable
class TestImageReduce(PillowTestCase):
# There are several internal implementations
remarkable_factors = [
# special implementations
1,
2,
3,
4,
5,
6,
# 1xN implementation
(1, 2),
(1, 3),
(1, 4),
(1, 7),
# Nx1 implementation
(2, 1),
(3, 1),
(4, 1),
(7, 1),
# general implementation with different paths
(4, 6),
(5, 6),
(4, 7),
(5, 7),
(19, 17),
]
@classmethod
def setUpClass(cls):
cls.gradients_image = Image.open("Tests/images/radial_gradients.png")
cls.gradients_image.load()
def test_args_factor(self):
im = Image.new("L", (10, 10))
self.assertEqual((4, 4), im.reduce(3).size)
self.assertEqual((4, 10), im.reduce((3, 1)).size)
self.assertEqual((10, 4), im.reduce((1, 3)).size)
with self.assertRaises(ValueError):
im.reduce(0)
with self.assertRaises(TypeError):
im.reduce(2.0)
with self.assertRaises(ValueError):
im.reduce((0, 10))
def test_args_box(self):
im = Image.new("L", (10, 10))
self.assertEqual((5, 5), im.reduce(2, (0, 0, 10, 10)).size)
self.assertEqual((1, 1), im.reduce(2, (5, 5, 6, 6)).size)
with self.assertRaises(TypeError):
im.reduce(2, "stri")
with self.assertRaises(TypeError):
im.reduce(2, 2)
with self.assertRaises(ValueError):
im.reduce(2, (0, 0, 11, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, 0, 10, 11))
with self.assertRaises(ValueError):
im.reduce(2, (-1, 0, 10, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, -1, 10, 10))
with self.assertRaises(ValueError):
im.reduce(2, (0, 5, 10, 5))
with self.assertRaises(ValueError):
im.reduce(2, (5, 0, 5, 10))
def test_unsupported_modes(self):
im = Image.new("P", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
im = Image.new("1", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
im = Image.new("I;16", (10, 10))
with self.assertRaises(ValueError):
im.reduce(3)
def get_image(self, mode):
mode_info = ImageMode.getmode(mode)
if mode_info.basetype == "L":
bands = [self.gradients_image]
for _ in mode_info.bands[1:]:
# rotate previous image
band = bands[-1].transpose(Image.ROTATE_90)
bands.append(band)
# Correct alpha channel by transforming completely transparent pixels.
# Low alpha values also emphasize error after alpha multiplication.
if mode.endswith("A"):
bands[-1] = bands[-1].point(lambda x: int(85 + x / 1.5))
im = Image.merge(mode, bands)
else:
assert len(mode_info.bands) == 1
im = self.gradients_image.convert(mode)
# change the height to make a not-square image
return im.crop((0, 0, im.width, im.height - 5))
def compare_reduce_with_box(self, im, factor):
box = (11, 13, 146, 164)
reduced = im.reduce(factor, box=box)
reference = im.crop(box).reduce(factor)
self.assertEqual(reduced, reference)
def compare_reduce_with_reference(self, im, factor, average_diff=0.4, max_diff=1):
"""Image.reduce() should look very similar to Image.resize(BOX).
A reference image is compiled from a large source area
and possible last column and last row.
+-----------+
|..........c|
|..........c|
|..........c|
|rrrrrrrrrrp|
+-----------+
"""
reduced = im.reduce(factor)
if not isinstance(factor, (list, tuple)):
factor = (factor, factor)
reference = Image.new(im.mode, reduced.size)
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
area = im.resize(area_size, Image.BOX, area_box)
reference.paste(area, (0, 0))
if area_size[0] < reduced.size[0]:
self.assertEqual(reduced.size[0] - area_size[0], 1)
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
last_column = im.resize((1, area_size[1]), Image.BOX, last_column_box)
reference.paste(last_column, (area_size[0], 0))
if area_size[1] < reduced.size[1]:
self.assertEqual(reduced.size[1] - area_size[1], 1)
last_row_box = (0, area_box[3], area_box[2], im.size[1])
last_row = im.resize((area_size[0], 1), Image.BOX, last_row_box)
reference.paste(last_row, (0, area_size[1]))
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
last_pixel = im.resize((1, 1), Image.BOX, last_pixel_box)
reference.paste(last_pixel, area_size)
self.assert_compare_images(reduced, reference, average_diff, max_diff)
def assert_compare_images(self, a, b, max_average_diff, max_diff=255):
self.assertEqual(a.mode, b.mode, "got mode %r, expected %r" % (a.mode, b.mode))
self.assertEqual(a.size, b.size, "got size %r, expected %r" % (a.size, b.size))
a, b = convert_to_comparable(a, b)
bands = ImageMode.getmode(a.mode).bands
for band, ach, bch in zip(bands, a.split(), b.split()):
ch_diff = ImageMath.eval("convert(abs(a - b), 'L')", a=ach, b=bch)
ch_hist = ch_diff.histogram()
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / float(
a.size[0] * a.size[1]
)
self.assertGreaterEqual(
max_average_diff,
average_diff,
(
"average pixel value difference {:.4f} > expected {:.4f} "
"for '{}' band"
).format(average_diff, max_average_diff, band),
)
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]
self.assertGreaterEqual(
max_diff,
last_diff,
"max pixel value difference {} > expected {} for '{}' band".format(
last_diff, max_diff, band
),
)
def test_mode_L(self):
im = self.get_image("L")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_LA(self):
im = self.get_image("LA")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_La(self):
im = self.get_image("La")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGB(self):
im = self.get_image("RGB")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGBA(self):
im = self.get_image("RGBA")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0.8, 5)
# With opaque alpha, an error should be way smaller.
im.putalpha(Image.new("L", im.size, 255))
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_RGBa(self):
im = self.get_image("RGBa")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_I(self):
im = self.get_image("I")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor)
self.compare_reduce_with_box(im, factor)
def test_mode_F(self):
im = self.get_image("F")
for factor in self.remarkable_factors:
self.compare_reduce_with_reference(im, factor, 0, 0)
self.compare_reduce_with_box(im, factor)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。