加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
读取数据集GPU.py 1.94 KB
一键复制 编辑 原始数据 按行查看 历史
66666 提交于 2022-06-02 04:20 . Initial commit
import os
import gym
import ray
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config['corridor_length']
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1,))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
if __name__ == '__main__':
from datetime import datetime
start_time = datetime.utcnow()
print('Python start time: {} UTC'.format(start_time))
if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
from agit import ray_init
ray_init()
from agit import open
dataset_path = 'agit://'
else:
ray.init()
dataset_path = './'
print('Ray Cluster Resources: {}'.format(ray.cluster_resources()))
import tensorflow as tf
print('TensorFlow CUDA is available: {}'.format(tf.config.list_physical_devices('GPU')))
import torch
print('pyTorch CUDA is available: {}'.format(torch.cuda.is_available()))
with open(dataset_path + 'expert_data.csv', 'rb') as file:
raw_data = file.read()
print(raw_data)
tune.run(
'PPO',
queue_trials=True, # Don't use this parameter unless you know what you do.
stop={'training_iteration': 10},
config={
'env': SimpleCorridor,
'env_config': {'corridor_length': 5},
'num_gpus': 1
}
)
complete_time = datetime.utcnow()
print('Python complete time: {} UTC'.format(complete_time))
print('Python resource time: {} UTC'.format(complete_time - start_time))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化