代码拉取完成,页面将自动刷新
import os
import gym
import ray
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config['corridor_length']
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1,))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
if __name__ == '__main__':
from datetime import datetime
start_time = datetime.utcnow()
print('Python start time: {} UTC'.format(start_time))
if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
from agit import ray_init
ray_init()
from agit import open
dataset_path = 'agit://'
else:
ray.init()
dataset_path = './'
print('Ray Cluster Resources: {}'.format(ray.cluster_resources()))
import tensorflow as tf
print('TensorFlow CUDA is available: {}'.format(tf.config.list_physical_devices('GPU')))
import torch
print('pyTorch CUDA is available: {}'.format(torch.cuda.is_available()))
with open(dataset_path + 'expert_data.csv', 'rb') as file:
raw_data = file.read()
print(raw_data)
tune.run(
'PPO',
queue_trials=True, # Don't use this parameter unless you know what you do.
stop={'training_iteration': 10},
config={
'env': SimpleCorridor,
'env_config': {'corridor_length': 5},
'num_gpus': 1
}
)
complete_time = datetime.utcnow()
print('Python complete time: {} UTC'.format(complete_time))
print('Python resource time: {} UTC'.format(complete_time - start_time))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。