代码拉取完成,页面将自动刷新
import os
import gym
from agit import Agent#之前的是eternatus
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config['corridor_length']
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1,))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
def main():
from datetime import datetime
start_time = datetime.utcnow()
print('Python start time: {} UTC'.format(start_time))
import tensorflow as tf
print('TensorFlow CUDA is available: {}'.format(tf.config.list_physical_devices('GPU')))
import torch
print('pyTorch CUDA is available: {}'.format(torch.cuda.is_available()))
if 'CLOUD_PROVIDER' in os.environ and os.environ['CLOUD_PROVIDER'] == 'Agit':
provider = 'Agit'
log_dir = '/root/.agit'
results_dir = '/root/.agit'
else:
provider = 'local'
log_dir = '../temp'
results_dir = '../temp'
# Initialize Ray Cluster
#ray_init()
tune.run(
'PPO',
queue_trials=True, # Don't use this parameter unless you know what you do.
stop={'training_iteration': 10},
config={
'env': SimpleCorridor,
'env_config': {'corridor_length': 5}
}
)
with open(os.path.join(results_dir, 'model.pkl'), 'wb') as file:
file.write(b'model data')
complete_time = datetime.utcnow()
print('Python complete time: {} UTC'.format(complete_time))
print('Python resource time: {} UTC'.format(complete_time - start_time))
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。