代码拉取完成,页面将自动刷新
#! usr/bin/python
#coding=utf-8
import glob
import selectivesearch
from PIL import Image
import cv2
import xml.dom.minidom
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import average_precision_score, precision_recall_curve
COLOR = (55,255,155)
COLOR_SS = (0,0,255)
def globSplit(path, splitNumber):
"""
读取path中的文件,并分为两个列表
"""
count = 0
list1 = []
list2 = []
for jpg_file in glob.glob(path):
if count < splitNumber:
list1.append(jpg_file)
elif count < splitNumber * 2:
list2.append(jpg_file)
else:
break
count += 1
return list1, list2
def predictFromProba(probaList, posProba=0.5, posTAG=1, negTag=-1):
"""
根据设置的可能性(probability)阈值返回分类列表
大于posProba则标记为正样本,否则为负样本
"""
labelList = []
for proba in probaList:
#proba[1]为正样本概率
if proba[1] >= posProba:
labelList.append(posTAG)
else:
labelList.append(negTag)
return labelList
def printList(l):
newStr = ''
for i in l:
newStr += str(i) + ' '
print newStr
def pointInArea(point, area):
x1 = area[0]
y1 = area[1]
x2 = area[2]
y2 = area[3]
x = point[0]
y = point[1]
if x >= x1 and x <= x2 and y >= y1 and y <= y2:
return True
return False
def calArea(area):
x1 = area[0]
y1 = area[1]
x2 = area[2]
y2 = area[3]
return (x1 - x2) * (y1 - y2)
def CrossLine(left, right, y, top, bottom, x):
# 判断一根横线和一根竖线是否交叉
# 横线有三个参数:left, right和y
# 竖线有三个参数:top, bottom和x
return (top < y) and (bottom > y) and (left < x) and (right > x)
def IOU(rect1, rect2):
x11 = rect1[0]
y11 = rect1[1]
x12 = rect1[2]
y12 = rect1[3]
x21 = rect2[0]
y21 = rect2[1]
x22 = rect2[2]
y22 = rect2[3]
if pointInArea((x11, y11), rect2) == False and pointInArea((x12, y12), rect2) == False \
and pointInArea((x11, y12), rect2) == False and pointInArea((x12, y11), rect2) == False \
and pointInArea((x21, y21), rect1) == False \
and not CrossLine(x11, x12, y11, y21, y22, x21) and not CrossLine(x21, x22, y21, y11, y12, x11):
return 0
xList = [x11, x12, x21, x22]
yList = [y11, y12, y21, y22]
xList.sort()
yList.sort()
areaMiddle = calArea([xList[1], yList[1], xList[2], yList[2]])
area1 = calArea(rect1)
area2 = calArea(rect2)
return float(areaMiddle) / (area1 + area2 - areaMiddle)
def NMS(rectList, threshold=.5):
rectList = sorted(rectList, key=lambda rectList: rectList[4],
reverse=True)
i = 0
while i < len(rectList):
j = i + 1
while j < len(rectList):
iou = IOU(rectList[i], rectList[j])
if iou > threshold:
del rectList[j]
else:
j += 1
i += 1
return rectList
print rectList
def getSelectiveSelectRect(im):
shape = im.shape
if shape[0] > shape[1]:
maxScale = shape[0]
else:
maxScale = shape[1]
img_lbl, regions = selectivesearch.selective_search(im, scale=maxScale, sigma=0.7, min_size=400)
rectList = []
originMaxSize = (shape[0] - 2) * (shape[1] - 2)
for i in range(len(regions)):
rect = regions[i]['rect']
rect = [rect[0], rect[1], rect[0] + rect[2], rect[1] + rect[3], 0]
size = calArea(rect)
if size < 400:
continue
if size >= originMaxSize:
continue
rectList.append(rect)
return rectList
def showImgWithSS(im, area, ssList):
img = im.copy()
cv2.rectangle(img, (area[0], area[1]), (area[2], area[3]),COLOR, 3)
for ssArea in ssList:
if len(ssArea) > 4:
cv2.putText(img, str(round(ssArea[4], 3)), (ssArea[0], ssArea[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLOR_SS, 2)
cv2.rectangle(img, (ssArea[0], ssArea[1]), (ssArea[2], ssArea[3]),COLOR_SS)
cv2.imwrite('showImgWithSS.jpg', img)
cv2.imshow('showImgWithSS', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def minInList(li):
minValue = 999
for item in li:
if item < minValue:
minValue = item
return minValue
def maxInList(li):
maxValue = -999
for item in li:
if item > maxValue:
maxValue = item
return maxValue
def precisionRecallCurve(testlabels, predictResult):
chartPrecision, chartRecall, _ = precision_recall_curve(testlabels, predictResult)
average_precision = average_precision_score(np.array(testlabels), predictResult)
print('Average precision score, micro-averaged over all classes: {0:0.2f}'.format(average_precision))
plt.figure()
plt.step(chartRecall, chartPrecision, color='b', alpha=0.2, where='post')
plt.fill_between(chartRecall, chartPrecision, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(
'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.format(average_precision))
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。