加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
postprocess.cc 5.83 KB
一键复制 编辑 原始数据 按行查看 历史
jin 提交于 2024-03-26 10:48 . load model conf and backup
// Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "postprocess.h"
#include <math.h>
#include <sys/time.h>
static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1,
float ymax1)
{
float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0);
float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0);
float i = w * h;
float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i;
return u <= 0.f ? 0.f : (i / u);
}
int nms(int validCount, std::vector<float> &outputLocations, std::vector<int> classIds, std::vector<int> &order,
int filterId, float threshold)
{
for (int i = 0; i < validCount; ++i)
{
if (order[i] == -1 || classIds[i] != filterId)
{
continue;
}
int n = order[i];
for (int j = i + 1; j < validCount; ++j)
{
int m = order[j];
if (m == -1 || classIds[i] != filterId)
{
continue;
}
float xmin0 = outputLocations[n * 4 + 0];
float ymin0 = outputLocations[n * 4 + 1];
float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2];
float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3];
float xmin1 = outputLocations[m * 4 + 0];
float ymin1 = outputLocations[m * 4 + 1];
float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2];
float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3];
float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
if (iou > threshold)
{
order[j] = -1;
}
}
}
return 0;
}
int quick_sort_indice_inverse(std::vector<float> &input, int left, int right, std::vector<int> &indices)
{
float key;
int key_index;
int low = left;
int high = right;
if (left < right)
{
key_index = indices[left];
key = input[left];
while (low < high)
{
while (low < high && input[high] <= key)
{
high--;
}
input[low] = input[high];
indices[low] = indices[high];
while (low < high && input[low] >= key)
{
low++;
}
input[high] = input[low];
indices[high] = indices[low];
}
input[low] = key;
indices[low] = key_index;
quick_sort_indice_inverse(input, left, low - 1, indices);
quick_sort_indice_inverse(input, low + 1, right, indices);
}
return low;
}
static float sigmoid(float x) { return 1.0 / (1.0 + expf(-x)); }
static float unsigmoid(float y) { return -1.0 * logf((1.0 / y) - 1.0); }
inline static int32_t __clip(float val, float min, float max)
{
float f = val <= min ? min : (val >= max ? max : val);
return f;
}
static int8_t qnt_f32_to_affine(float f32, int32_t zp, float scale)
{
float dst_val = (f32 / scale) + zp;
int8_t res = (int8_t)__clip(dst_val, -128, 127);
return res;
}
static float deqnt_affine_to_f32(int8_t qnt, int32_t zp, float scale) { return ((float)qnt - (float)zp) * scale; }
int process(int8_t *input, int *anchor, int grid_h, int grid_w, int classes,/* int height, int width, */ int stride,
std::vector<float> &boxes, std::vector<float> &objProbs, std::vector<int> &classId, float threshold,
int32_t zp, float scale)
{
int validCount = 0;
int grid_len = grid_h * grid_w;
int8_t thres_i8 = qnt_f32_to_affine(threshold, zp, scale);
// printf("thres_i8: %d, PROP_BOX_SIZE: %d, classes: %d\n", thres_i8, PROP_BOX_SIZE, classes);
for (int a = 0; a < 3; a++)
{
for (int i = 0; i < grid_h; i++)
{
for (int j = 0; j < grid_w; j++)
{
int8_t box_confidence = input[((classes + 5) * a + 4) * grid_len + i * grid_w + j];
if (box_confidence >= thres_i8)
{
int offset = ((classes + 5) * a) * grid_len + i * grid_w + j;
int8_t *in_ptr = input + offset;
float box_x = (deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5;
float box_y = (deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5;
float box_w = (deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0;
float box_h = (deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0;
box_x = (box_x + j) * (float)stride;
box_y = (box_y + i) * (float)stride;
box_w = box_w * box_w * (float)anchor[a * 2];
box_h = box_h * box_h * (float)anchor[a * 2 + 1];
box_x -= (box_w / 2.0);
box_y -= (box_h / 2.0);
int8_t maxClassProbs = in_ptr[5 * grid_len];
int maxClassId = 0;
for (int k = 1; k < classes; ++k)
{
int8_t prob = in_ptr[(5 + k) * grid_len];
if (prob > maxClassProbs)
{
maxClassId = k;
maxClassProbs = prob;
}
}
if (maxClassProbs > thres_i8)
{
objProbs.push_back((deqnt_affine_to_f32(maxClassProbs, zp, scale)) * (deqnt_affine_to_f32(box_confidence, zp, scale)));
classId.push_back(maxClassId);
validCount++;
boxes.push_back(box_x);
boxes.push_back(box_y);
boxes.push_back(box_w);
boxes.push_back(box_h);
}
}
}
}
}
return validCount;
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化