加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 11.10 KB
一键复制 编辑 原始数据 按行查看 历史
Bubbliiiing 提交于 2020-07-30 14:31 . Update train.py
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import os
import numpy as np
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from utils.dataloader import yolo_dataset_collate, YoloDataset
from nets.yolo_training import YOLOLoss,Generator
from nets.yolo4 import YoloBody
from tqdm import tqdm
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1,3,2])[::-1,:,:]
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda):
total_loss = 0
val_loss = 0
start_time = time.time()
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
optimizer.zero_grad()
outputs = net(images)
losses = []
for i in range(3):
loss_item = yolo_losses[i](outputs[i], targets)
losses.append(loss_item[0])
loss = sum(losses)
loss.backward()
optimizer.step()
total_loss += loss
waste_time = time.time() - start_time
pbar.set_postfix(**{'total_loss': total_loss.item() / (iteration + 1),
'lr' : get_lr(optimizer),
'step/s' : waste_time})
pbar.update(1)
start_time = time.time()
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
images_val, targets_val = batch[0], batch[1]
with torch.no_grad():
if cuda:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor)).cuda()
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
else:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor))
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
optimizer.zero_grad()
outputs = net(images_val)
losses = []
for i in range(3):
loss_item = yolo_losses[i](outputs[i], targets_val)
losses.append(loss_item[0])
loss = sum(losses)
val_loss += loss
pbar.set_postfix(**{'total_loss': val_loss.item() / (iteration + 1)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
#-------------------------------#
# 输入的shape大小
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
#-------------------------------#
input_shape = (416,416)
#-------------------------------#
# tricks的使用设置
#-------------------------------#
Cosine_lr = False
mosaic = True
# 用于设定是否使用cuda
Cuda = True
smoooth_label = 0
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
annotation_path = '2007_train.txt'
#-------------------------------#
# 获得先验框和类
#-------------------------------#
anchors_path = 'model_data/yolo_anchors.txt'
classes_path = 'model_data/voc_classes.txt'
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
num_classes = len(class_names)
# 创建模型
model = YoloBody(len(anchors[0]),num_classes)
#-------------------------------------------#
# 权值文件的下载请看README
#-------------------------------------------#
model_path = "model_data/yolo4_weights.pth"
# 加快模型训练的效率
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path, map_location=device)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
# 建立loss函数
yolo_losses = []
for i in range(3):
yolo_losses.append(YOLOLoss(np.reshape(anchors,[-1,2]),num_classes, \
(input_shape[1], input_shape[0]), smoooth_label, Cuda))
# 0.1用于验证,0.9用于训练
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
lr = 1e-3
Batch_size = 4
Init_Epoch = 0
Freeze_Epoch = 25
optimizer = optim.Adam(net.parameters(),lr,weight_decay=5e-4)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.9)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(mosaic = False)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 冻结一定部分训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch,Cuda)
lr_scheduler.step()
if True:
lr = 1e-4
Batch_size = 2
Freeze_Epoch = 25
Unfreeze_Epoch = 50
optimizer = optim.Adam(net.parameters(),lr,weight_decay=5e-4)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.9)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False)
gen = DataLoader(train_dataset, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(mosaic = False)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch,Cuda)
lr_scheduler.step()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化