加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
kitti.py 8.19 KB
一键复制 编辑 原始数据 按行查看 历史
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Mads Dyrmann
"""
#import xml.etree.cElementTree as ET
from concurrent.futures import ThreadPoolExecutor
import re, get_image_size
#import xml.etree.cElementTree as ET
import xml.etree.ElementTree as ET
import os
import struct, imghdr
executor = ThreadPoolExecutor(max_workers=30)
CROPBBOXTOIMAGE = True
def readAnnotationFile(annotationFile):
def splitanno(instr):
return re.findall(r'(?:[^\s,"]|"(?:\\.|[^"])*")+', instr)
with open(annotationFile,'r') as fid:
annotationlist = fid.readlines()
#annotationlist = [x.split(sep) for x in annotationlist]
annotationlist = [splitanno(x) for x in annotationlist]
return annotationlist
def kitti2AU(kittyAnnotationList, imsize=None, filename=None, cropbboxtoimage=False):
# AU format: # a JSON-string of the following format
# {
# 'label':<classlabel>, # a label without spaces
# 'imagepath':<imagepath>, # relative path to image
# 'imagewidth':<image width>, # width of image
# 'imageheight':<image height>, # height of image
# 'xmin': <xmin>, # minimum column coordinate staring from upper left corner
# 'ymin': <ymin>, # maximum column coordinate staring from upper left corner
# 'xmax': <xmax>, # minimum row coordinate staring from upper left corner
# 'ymax': <ymax>, # maximum row coordinate staring from upper left corner
# 'orientation':<rotation [0:1]>,
# 'occlusion':<occlusion>
# }
############# Arguments:
# kittyAnnotationList list of rows from kitti annotation
# imsize: size of image
AUannotation= {
'label':'', # a label without spaces
'imagepath':'', # relative path to image
'imagewidth':0, # width of image
'imageheight':0, # height of image
'xmin': 0, # minimum column coordinate staring from upper left corner
'ymin': 0, # maximum column coordinate staring from upper left corner
'xmax': 0, # minimum row coordinate staring from upper left corner
'ymax': 0, # maximum row coordinate staring from upper left corner
'orientation':0.0,
'occlusion':0
}
AUannotationlist = []
for KittiAnnotation in kittyAnnotationList:
#splitannotation = KittiAnnotation.split()
#Split the string at spaces, but respect quotes in specie's names
if type(KittiAnnotation) is str:
KittiAnnotation = re.findall(r'(?:[^\s,"]|"(?:\\.|[^"])*")+', KittiAnnotation)
if not imsize:
if not filename:
#defaults to [2048,2448,3]
imsize=[2048,2448,3] #height, witdh, channels
else:
width, height = get_image_size.get_image_size(filename)
imsize = [height, width, 3]
objectclass=KittiAnnotation[0]
xmin=KittiAnnotation[4]
ymin=KittiAnnotation[5]
xmax=KittiAnnotation[6]
ymax=KittiAnnotation[7]
if cropbboxtoimage:
xmin = float(max(0,int(xmin)))
ymin = float(max(0,int(ymin)))
xmax = float(min(imsize[1]-1,int(xmax)))
ymax = float(min(imsize[0]-1,int(ymax)))
assert(xmin>=0)
assert(ymin>=0)
assert(xmax<=imsize[1])
assert(ymax<=imsize[0])
anno_tmp = AUannotation.copy()
anno_tmp['label']=objectclass
anno_tmp['xmin']=xmin
anno_tmp['xmax']=xmax
anno_tmp['ymin']=ymin
anno_tmp['ymax']=ymax
anno_tmp['imagepath']=filename
AUannotationlist.append(anno_tmp)
return AUannotationlist
#convert a list of kitti-annotations to a tree of VOC
def kitti2voc(kittyAnnotationList, imsize=None, filename=None):
annotation = ET.Element("annotation")
ET.SubElement(annotation, "folder").text = "VOC2007"
for KittiAnnotation in kittyAnnotationList:
#splitannotation = KittiAnnotation.split()
#Split the string at spaces, but respect quotes in specie's names
splitannotation = re.findall(r'(?:[^\s,"]|"(?:\\.|[^"])*")+', KittiAnnotation)
imageobject = ET.SubElement(annotation, "object")
ET.SubElement(imageobject, "name").text = splitannotation[0].replace('"','')
ET.SubElement(imageobject, "pose").text = 'frontal'
ET.SubElement(imageobject, "truncated").text = 0
ET.SubElement(imageobject, "difficult").text = 0
if not imsize:
if not filename:
#defaults to [2048,2448,3]
imsize=[2048,2448,3] #height, witdh, channels
else:
#height, width = get_image_size(filename)
width, height = get_image_size.get_image_size(filename)
imsize = [height, width, 3]
sz = ET.SubElement(annotation, "size")
ET.SubElement(sz, "width").text = str(imsize[1])
ET.SubElement(sz, "height").text = str(imsize[0])
ET.SubElement(sz, "depth").text = str(imsize[2])
bndbox = ET.SubElement(imageobject, "bndbox")
xmin=splitannotation[4]
ymin=splitannotation[5]
xmax=splitannotation[6]
ymax=splitannotation[7]
if CROPBBOXTOIMAGE:
xmin = str(max(0,int(xmin)))
ymin = str(max(0,int(ymin)))
xmax = str(min(imsize[1]-1,int(xmax)))
ymax = str(min(imsize[0]-1,int(ymax)))
assert(float(xmin)>=0)
assert(float(ymin)>=0)
assert(float(xmax)<=imsize[1])
assert(float(ymax)<=imsize[0])
ET.SubElement(bndbox, "xmin").text = xmin
ET.SubElement(bndbox, "ymin").text = ymin
ET.SubElement(bndbox, "xmax").text = xmax
ET.SubElement(bndbox, "ymax").text = ymax
tree = ET.ElementTree(annotation)
#xmlstr = ET.ElementTree.tostring(annotation, encoding='utf8', method='xml')
return tree
#convert a list of kitti-annotations to yolo-format
# <object-class> <x> <y> <width> <height>, where values are relative to image size
def kitti2yolo(kittyAnnotationList, imsize=None, filename=None):
def convert(size, box):
# box xmin, xmax, ymin, ymax
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
yoloannotationlist = []
for KittiAnnotation in kittyAnnotationList:
#splitannotation = KittiAnnotation.split()
#Split the string at spaces, but respect quotes in specie's names
splitannotation = re.findall(r'(?:[^\s,"]|"(?:\\.|[^"])*")+', KittiAnnotation)
if not imsize:
if not filename:
#defaults to [2048,2448,3]
imsize=[2048,2448,3] #height, witdh, channels
else:
height, width = get_image_size(filename)
imsize = [height, width, 3]
objectclass=splitannotation[0]
xmin=splitannotation[4]
ymin=splitannotation[5]
xmax=splitannotation[6]
ymax=splitannotation[7]
if CROPBBOXTOIMAGE:
xmin = float(max(0,int(xmin)))
ymin = float(max(0,int(ymin)))
xmax = float(min(imsize[1]-1,int(xmax)))
ymax = float(min(imsize[0]-1,int(ymax)))
assert(xmin>=0)
assert(ymin>=0)
assert(xmax<=imsize[1])
assert(ymax<=imsize[0])
(x,y,width,height) = convert(imsize,(xmin,xmax,ymin,ymax))
yoloannotationlist.append([objectclass,x,y,width,height])
return yoloannotationlist
def convertAnnotationFile2VOC(annotationFile,exportdir):
annotation = ET.Element("annotation")
ET.SubElement(annotation, "folder").text = "VOC2007"
with open(annotationFile,'r') as f:
KittiAnnotations = f.readlines()
tree = kitti2voc(KittiAnnotations)
filename = os.path.basename(annotationFile)
savedir = os.path.join(exportdir,filename.replace('txt','xml'))
tree.write(savedir, encoding="UTF-8")
def convertAnnotationFile2YOLO(annotationFile,exportdir):
with open(annotationFile,'r') as f:
KittiAnnotations = f.readlines()
yoloannotationlist = kitti2yolo(KittiAnnotations)
filename = os.path.basename(annotationFile)
savedir = os.path.join(exportdir,filename)
with open(savedir,'w') as fid:
fid.writelines(yoloannotationlist)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化