代码拉取完成,页面将自动刷新
%
% High-Speed Tracking with Kernelized Correlation Filters
%
% Joao F. Henriques, 2014
% http://www.isr.uc.pt/~henriques/
%
% Main interface for Kernelized/Dual Correlation Filters (KCF/DCF).
% This function takes care of setting up parameters, loading video
% information and computing precisions. For the actual tracking code,
% check out the TRACKER function.
%
% RUN_TRACKER
% Without any parameters, will ask you to choose a video, track using
% the Gaussian KCF on HOG, and show the results in an interactive
% figure. Press 'Esc' to stop the tracker early. You can navigate the
% video using the scrollbar at the bottom.
%
% RUN_TRACKER VIDEO
% Allows you to select a VIDEO by its name. 'all' will run all videos
% and show average statistics. 'choose' will select one interactively.
%
% RUN_TRACKER VIDEO KERNEL
% Choose a KERNEL. 'gaussian'/'polynomial' to run KCF, 'linear' for DCF.
%
% RUN_TRACKER VIDEO KERNEL FEATURE
% Choose a FEATURE type, either 'hog' or 'gray' (raw pixels).
%
% RUN_TRACKER(VIDEO, KERNEL, FEATURE, SHOW_VISUALIZATION, SHOW_PLOTS)
% Decide whether to show the scrollable figure, and the precision plot.
%
% Useful combinations:
% >> run_tracker choose gaussian hog %Kernelized Correlation Filter (KCF)
% >> run_tracker choose linear hog %Dual Correlation Filter (DCF)
% >> run_tracker choose gaussian gray %Single-channel KCF (ECCV'12 paper)
% >> run_tracker choose linear gray %MOSSE filter (single channel)
%
function [precision, fps] = run_tracker(video, kernel_type, feature_type, show_visualization, show_plots)
%path to the videos (you'll be able to choose one with the GUI).
base_path = './data/Benchmark/';
%default settings
if nargin < 1, video = 'choose'; end
if nargin < 2, kernel_type = 'gaussian'; end
if nargin < 3, feature_type = 'hog'; end
if nargin < 4, show_visualization = ~strcmp(video, 'all'); end
if nargin < 5, show_plots = ~strcmp(video, 'all'); end
%parameters according to the paper. at this point we can override
%parameters based on the chosen kernel or feature type
kernel.type = kernel_type;
features.gray = false;
features.hog = false;
padding = 1.5; %extra area surrounding the target
lambda = 1e-4; %regularization
output_sigma_factor = 0.1; %spatial bandwidth (proportional to target)
switch feature_type
case 'gray',
interp_factor = 0.075; %linear interpolation factor for adaptation
kernel.sigma = 0.2; %gaussian kernel bandwidth
kernel.poly_a = 1; %polynomial kernel additive term
kernel.poly_b = 7; %polynomial kernel exponent
features.gray = true;
cell_size = 1;
case 'hog',
interp_factor = 0.02;
kernel.sigma = 0.5;
kernel.poly_a = 1;
kernel.poly_b = 9;
features.hog = true;
features.hog_orientations = 9;
cell_size = 4;
otherwise
error('Unknown feature.')
end
assert(any(strcmp(kernel_type, {'linear', 'polynomial', 'gaussian'})), 'Unknown kernel.')
switch video
case 'choose',
%ask the user for the video, then call self with that video name.
video = choose_video(base_path);
if ~isempty(video),
[precision, fps] = run_tracker(video, kernel_type, ...
feature_type, show_visualization, show_plots);
if nargout == 0, %don't output precision as an argument
clear precision
end
end
case 'all',
%all videos, call self with each video name.
%only keep valid directory names
dirs = dir(base_path);
videos = {dirs.name};
videos(strcmp('.', videos) | strcmp('..', videos) | ...
strcmp('anno', videos) | ~[dirs.isdir]) = [];
%the 'Jogging' sequence has 2 targets, create one entry for each.
%we could make this more general if multiple targets per video
%becomes a common occurence.
videos(strcmpi('Jogging', videos)) = [];
videos(end+1:end+2) = {'Jogging.1', 'Jogging.2'};
all_precisions = zeros(numel(videos),1); %to compute averages
all_fps = zeros(numel(videos),1);
if ~exist('matlabpool', 'file'),
%no parallel toolbox, use a simple 'for' to iterate
for k = 1:numel(videos),
[all_precisions(k), all_fps(k)] = run_tracker(videos{k}, ...
kernel_type, feature_type, show_visualization, show_plots);
end
else
%evaluate trackers for all videos in parallel
if matlabpool('size') == 0,
matlabpool open;
end
parfor k = 1:numel(videos),
[all_precisions(k), all_fps(k)] = run_tracker(videos{k}, ...
kernel_type, feature_type, show_visualization, show_plots);
end
end
%compute average precision at 20px, and FPS
mean_precision = mean(all_precisions);
fps = mean(all_fps);
fprintf('\nAverage precision (20px):% 1.3f, Average FPS:% 4.2f\n\n', mean_precision, fps)
if nargout > 0,
precision = mean_precision;
end
case 'benchmark',
%running in benchmark mode - this is meant to interface easily
%with the benchmark's code.
%get information (image file names, initial position, etc) from
%the benchmark's workspace variables
seq = evalin('base', 'subS');
target_sz = seq.init_rect(1,[4,3]);
pos = seq.init_rect(1,[2,1]) + floor(target_sz/2);
img_files = seq.s_frames;
video_path = [];
%call tracker function with all the relevant parameters
positions = tracker(video_path, img_files, pos, target_sz, ...
padding, kernel, lambda, output_sigma_factor, interp_factor, ...
cell_size, features, false);
%return results to benchmark, in a workspace variable
rects = [positions(:,2) - target_sz(2)/2, positions(:,1) - target_sz(1)/2];
rects(:,3) = target_sz(2);
rects(:,4) = target_sz(1);
res.type = 'rect';
res.res = rects;
assignin('base', 'res', res);
otherwise
%we were given the name of a single video to process.
%get image file names, initial state, and ground truth for evaluation
[img_files, pos, target_sz, ground_truth, video_path] = load_video_info(base_path, video);
%call tracker function with all the relevant parameters
[positions, time] = tracker(video_path, img_files, pos, target_sz, ...
padding, kernel, lambda, output_sigma_factor, interp_factor, ...
cell_size, features, show_visualization); %calculate and show precision plot, as well as frames-per-second
precisions = precision_plot(positions, ground_truth, video, show_plots);
fps = numel(img_files) / time;
fprintf('%12s - Precision (20px):% 1.3f, FPS:% 4.2f\n', video, precisions(20), fps)
[positions, time] = multiscale_tracker(video_path, img_files, pos, target_sz, ...
padding, kernel, lambda, output_sigma_factor, interp_factor, ...
cell_size, features, show_visualization);
%calculate and show precision plot, as well as frames-per-second
precisions = precision_plot(positions, ground_truth, video, show_plots);
fps = numel(img_files) / time;
fprintf('%12s - Precision (20px):% 1.3f, FPS:% 4.2f\n', video, precisions(20), fps)
if nargout > 0,
%return precisions at a 20 pixels threshold
precision = precisions(20);
end
close all;
end
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。