代码拉取完成,页面将自动刷新
同步操作将从 ctguhzy/clarity-upscaler 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import gc
import tracemalloc
import os
import logging
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional, Tuple, List, NamedTuple
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
from modules.api.api import decode_base64_to_image
import gradio as gr
import time
from einops import rearrange
from scripts import global_state, hook, external_code, batch_hijack, controlnet_version, utils
from scripts.controlnet_lora import bind_control_lora, unbind_control_lora
from scripts.processor import *
from scripts.controlnet_lllite import clear_all_lllite
from scripts.controlmodel_ipadapter import clear_all_ip_adapter
from scripts.utils import load_state_dict, get_unique_axis0, align_dim_latent
from scripts.hook import ControlParams, UnetHook, HackedImageRNG
from scripts.enums import ControlModelType, StableDiffusionVersion, HiResFixOption
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.controlnet_ui.photopea import Photopea
from scripts.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img, StableDiffusionProcessing
from modules.images import save_image
from scripts.infotext import Infotext
import cv2
import numpy as np
import torch
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
from scripts.controlnet_model_guess import build_model_by_guess, ControlModel
from scripts.hook import torch_dfs
# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)
def clear_all_secondary_control_models(m):
all_modules = torch_dfs(m)
for module in all_modules:
_original_inner_forward_cn_hijack = getattr(module, '_original_inner_forward_cn_hijack', None)
original_forward_cn_hijack = getattr(module, 'original_forward_cn_hijack', None)
if _original_inner_forward_cn_hijack is not None:
module._forward = _original_inner_forward_cn_hijack
if original_forward_cn_hijack is not None:
module.forward = original_forward_cn_hijack
clear_all_lllite()
clear_all_ip_adapter()
def find_closest_lora_model_name(search: str):
if not search:
return None
if search in global_state.cn_models:
return search
search = search.lower()
if search in global_state.cn_models_names:
return global_state.cn_models_names.get(search)
applicable = [name for name in global_state.cn_models_names.keys()
if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return global_state.cn_models_names[applicable[0]]
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
p.__class__ = processing.StableDiffusionProcessingTxt2Img
dummy = processing.StableDiffusionProcessingTxt2Img()
for k,v in dummy.__dict__.items():
if hasattr(p, k):
continue
setattr(p, k, v)
global_state.update_cn_models()
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
if image is None:
return None
if isinstance(image, (tuple, list)):
image = {'image': image[0], 'mask': image[1]}
elif not isinstance(image, dict):
image = {'image': image, 'mask': None}
else: # type(image) is dict
# copy to enable modifying the dict and prevent response serialization error
image = dict(image)
if isinstance(image['image'], str):
if os.path.exists(image['image']):
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
elif image['image']:
image['image'] = external_code.to_base64_nparray(image['image'])
else:
image['image'] = None
# If there is no image, return image with None image and None mask
if image['image'] is None:
image['mask'] = None
return image
if 'mask' not in image or image['mask'] is None:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
elif isinstance(image['mask'], str):
if os.path.exists(image['mask']):
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
elif image['mask']:
image['mask'] = external_code.to_base64_nparray(image['mask'])
else:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
return image
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
"""
Prepare an image mask for the inpainting process.
This function takes as input a PIL Image object and an instance of the
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
1. Convert the mask to grayscale (mode "L").
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
invert the mask colors.
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
Args:
mask (Image.Image): The input mask as a PIL Image object.
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
containing the processing parameters.
Returns:
mask (Image.Image): The prepared mask as a PIL Image object.
"""
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if hasattr(p, 'mask_blur_x'):
if getattr(p, "mask_blur_x", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), p.mask_blur_x)
mask = Image.fromarray(np_mask)
if getattr(p, "mask_blur_y", 0) > 0:
np_mask = np.array(mask)
kernel_size = 2 * int(2.5 * p.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), p.mask_blur_y)
mask = Image.fromarray(np_mask)
else:
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
"""
Set the random seed for NumPy based on the provided parameters.
Args:
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
Returns:
Optional[int]: The computed random seed if successful, or None if an exception occurs.
This function sets the random seed for NumPy using the seed and subseed values from the given instance of
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
Otherwise, it takes the maximum of the provided seed value and 0.
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
"""
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
def get_pytorch_control(x: np.ndarray) -> torch.Tensor:
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
y = y.to(devices.get_device_for("controlnet"))
y = y.clone()
return y
class Script(scripts.Script, metaclass=(
utils.TimeMeta if logger.level == logging.DEBUG else type)):
model_cache: Dict[str, ControlModel] = OrderedDict()
def __init__(self) -> None:
super().__init__()
self.latest_network = None
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
self.unloadable = global_state.cn_preprocessor_unloadable
self.input_image = None
self.latest_model_hash = ""
self.enabled_units = []
self.detected_map = []
self.post_processors = []
self.noise_modifier = None
self.ui_batch_option_state = [external_code.BatchOption.DEFAULT.value, False]
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
@staticmethod
def get_default_ui_unit(is_ui=True):
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
return cls(
enabled=False,
module="none",
model="None"
)
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str, photopea: Optional[Photopea]) -> Tuple[ControlNetUiGroup, gr.State]:
group = ControlNetUiGroup(
is_img2img,
Script.get_default_ui_unit(),
self.preprocessor,
photopea,
)
return group, group.render(tabname, elem_id_tabname)
def ui_batch_options(self, is_img2img: bool, elem_id_tabname: str):
batch_option = gr.Radio(
choices=[e.value for e in external_code.BatchOption],
value=external_code.BatchOption.DEFAULT.value,
label="Batch Option",
elem_id=f"{elem_id_tabname}_controlnet_batch_option_radio",
elem_classes="controlnet_batch_option_radio",
)
use_batch_style_align = gr.Checkbox(
label='[StyleAlign] Align image style in the batch.'
)
unit_args = [batch_option, use_batch_style_align]
def update_ui_batch_options(*args):
self.ui_batch_option_state = args
return
for comp in unit_args:
event_subscribers = []
if hasattr(comp, "edit"):
event_subscribers.append(comp.edit)
elif hasattr(comp, "click"):
event_subscribers.append(comp.click)
elif isinstance(comp, gr.Slider) and hasattr(comp, "release"):
event_subscribers.append(comp.release)
elif hasattr(comp, "change"):
event_subscribers.append(comp.change)
if hasattr(comp, "clear"):
event_subscribers.append(comp.clear)
for event_subscriber in event_subscribers:
event_subscriber(
fn=update_ui_batch_options, inputs=unit_args
)
return
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
infotext = Infotext()
ui_groups = []
controls = []
max_models = shared.opts.data.get("control_net_unit_count", 3)
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
photopea = Photopea() if not shared.opts.data.get("controlnet_disable_photopea_edit", False) else None
if max_models > 1:
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
for i in range(max_models):
with gr.Tab(f"ControlNet Unit {i}",
elem_classes=['cnet-unit-tab']):
group, state = self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
else:
with gr.Column():
group, state = self.uigroup(f"ControlNet", is_img2img, elem_id_tabname, photopea)
ui_groups.append(group)
controls.append(state)
with gr.Accordion(f"Batch Options", open=False, elem_id="controlnet_batch_options"):
self.ui_batch_options(is_img2img, elem_id_tabname)
for i, ui_group in enumerate(ui_groups):
infotext.register_unit(i, ui_group)
if shared.opts.data.get("control_net_sync_field_args", True):
self.infotext_fields = infotext.infotext_fields
self.paste_field_names = infotext.paste_field_names
return tuple(controls)
@staticmethod
def clear_control_model_cache():
Script.model_cache.clear()
gc.collect()
devices.torch_gc()
@staticmethod
def load_control_model(p, unet, model) -> ControlModel:
if model in Script.model_cache:
logger.info(f"Loading model from cache: {model}")
control_model = Script.model_cache[model]
if control_model.type == ControlModelType.Controlllite:
# Falls through to load Controlllite model fresh.
# TODO Fix context sharing issue for Controlllite.
pass
elif not control_model.type.allow_context_sharing():
# Creates a shallow-copy of control_model so that configs/inputs
# from different units can be bind correctly. While heavy objects
# of the underlying nn.Module is not copied.
return ControlModel(copy(control_model.model), control_model.type)
else:
return control_model
# Remove model from cache to clear space before building another model
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
Script.model_cache.popitem(last=False)
gc.collect()
devices.torch_gc()
control_model = Script.build_control_model(p, unet, model)
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
Script.model_cache[model] = control_model
return control_model
@staticmethod
def build_control_model(p, unet, model) -> ControlModel:
if model is None or model == 'None':
raise RuntimeError(f"You have not selected any ControlNet Model.")
model_path = global_state.cn_models.get(model, None)
if model_path is None:
model = find_closest_lora_model_name(model)
model_path = global_state.cn_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
# trim '"' at start/end
if model_path.startswith("\"") and model_path.endswith("\""):
model_path = model_path[1:-1]
if not os.path.exists(model_path):
raise ValueError(f"file not found: {model_path}")
logger.info(f"Loading model: {model}")
state_dict = load_state_dict(model_path)
control_model = build_model_by_guess(state_dict, unet, model_path)
control_model.model.to('cpu', dtype=p.sd_model.dtype)
logger.info(f"ControlNet model {model}({control_model.type}) loaded.")
return control_model
@staticmethod
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
return default
def get_element(obj, strict=False):
if not isinstance(obj, list):
return obj if not strict or idx == 0 else None
elif idx < len(obj):
return obj[idx]
else:
return None
attribute_value = get_element(getattr(p, attribute, None), strict)
return attribute_value if attribute_value is not None else default
@staticmethod
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
selector = Script.get_remote_call
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
unit.module = selector(p, "control_net_module", unit.module, idx)
unit.model = selector(p, "control_net_model", unit.model, idx)
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
unit.image = selector(p, "control_net_image", unit.image, idx)
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
# Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
# for more details.
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
return unit
@staticmethod
def detectmap_proc(detected_map, module, resize_mode, h, w):
if 'inpaint' in module:
detected_map = detected_map.astype(np.float32)
else:
detected_map = HWC3(detected_map)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def high_quality_resize(x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
if x.shape[0] != size[1] or x.shape[1] != size[0]:
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
else:
y = x
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
if resize_mode == external_code.ResizeMode.RESIZE:
detected_map = high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
if resize_mode == external_code.ResizeMode.OUTER_FIT:
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
else:
k = max(k0, k1)
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
@staticmethod
def get_enabled_units(p):
units = external_code.get_all_units_in_processing(p)
if len(units) == 0:
# fill a null group
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
if remote_unit.enabled:
units.append(remote_unit)
enabled_units = []
for idx, unit in enumerate(units):
local_unit = Script.parse_remote_call(p, unit, idx)
if not local_unit.enabled:
continue
if hasattr(local_unit, "unfold_merged"):
enabled_units.extend(local_unit.unfold_merged())
else:
enabled_units.append(copy(local_unit))
Infotext.write_infotext(enabled_units, p)
return enabled_units
@staticmethod
def choose_input_image(
p: processing.StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
idx: int
) -> Tuple[np.ndarray, external_code.ResizeMode]:
""" Choose input image from following sources with descending priority:
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
- unit.image: ControlNet tab input image.
- p.init_images: A1111 img2img tab input image.
Returns:
- The input image in ndarray form.
- The resize mode.
"""
def parse_unit_image(unit: external_code.ControlNetUnit) -> Union[List[Dict[str, np.ndarray]], Dict[str, np.ndarray]]:
unit_has_multiple_images = (
isinstance(unit.image, list) and
len(unit.image) > 0 and
"image" in unit.image[0]
)
if unit_has_multiple_images:
return [
d
for img in unit.image
for d in (image_dict_from_any(img),)
if d is not None
]
return image_dict_from_any(unit.image)
def decode_image(img) -> np.ndarray:
"""Need to check the image for API compatibility."""
if isinstance(img, str):
return np.asarray(decode_base64_to_image(image['image']))
else:
assert isinstance(img, np.ndarray)
return img
# 4 input image sources.
p_image_control = getattr(p, "image_control", None)
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
image = parse_unit_image(unit)
a1111_image = getattr(p, "init_images", [None])[0]
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
if batch_hijack.instance.is_batch and p_image_control is not None:
logger.warning("Warn: Using legacy field 'p.image_control'.")
input_image = HWC3(np.asarray(p_image_control))
elif p_input_image is not None:
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
color = HWC3(np.asarray(p_input_image['image']))
alpha = np.asarray(p_input_image['mask'])[..., None]
input_image = np.concatenate([color, alpha], axis=2)
else:
input_image = HWC3(np.asarray(p_input_image))
elif image:
if isinstance(image, list):
# Add mask logic if later there is a processor that accepts mask
# on multiple inputs.
input_image = [HWC3(decode_image(img['image'])) for img in image]
else:
input_image = HWC3(decode_image(image['image']))
if 'mask' in image and image['mask'] is not None:
while len(image['mask'].shape) < 3:
image['mask'] = image['mask'][..., np.newaxis]
if 'inpaint' in unit.module:
logger.info("using inpaint as input")
color = HWC3(image['image'])
alpha = image['mask'][:, :, 0:1]
input_image = np.concatenate([color, alpha], axis=2)
elif (
not shared.opts.data.get("controlnet_ignore_noninpaint_mask", False) and
# There is wield gradio issue that would produce mask that is
# not pure color when no scribble is made on canvas.
# See https://github.com/Mikubill/sd-webui-controlnet/issues/1638.
not (
(image['mask'][:, :, 0] <= 5).all() or
(image['mask'][:, :, 0] >= 250).all()
)
):
logger.info("using mask as input")
input_image = HWC3(image['mask'][:, :, 0])
unit.module = 'none' # Always use black bg and white line
elif a1111_image is not None:
input_image = HWC3(np.asarray(a1111_image))
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
assert a1111_i2i_resize_mode is not None
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if 'inpaint' in unit.module:
if a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
assert a1111_mask.ndim == 2
assert a1111_mask.shape[0] == input_image.shape[0]
assert a1111_mask.shape[1] == input_image.shape[1]
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
else:
input_image = np.concatenate([
input_image[:, :, 0:3],
np.zeros_like(input_image, dtype=np.uint8)[:, :, 0:1],
], axis=2)
else:
# No input image detected.
if batch_hijack.instance.is_batch:
shared.state.interrupted = True
raise ValueError("controlnet is enabled but no input image is given")
assert isinstance(input_image, (np.ndarray, list))
return input_image, resize_mode
@staticmethod
def try_crop_image_with_a1111_mask(
p: StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
input_image: np.ndarray,
resize_mode: external_code.ResizeMode,
) -> np.ndarray:
"""
Crop ControlNet input image based on A1111 inpaint mask given.
This logic is crutial in upscale scripts, as they use A1111 mask + inpaint_full_res
to crop tiles.
"""
# Note: The method determining whether the active script is an upscale script is purely
# based on `extra_generation_params` these scripts attach on `p`, and subject to change
# in the future.
# TODO: Change this to a more robust condition once A1111 offers a way to verify script name.
is_upscale_script = any("upscale" in k.lower() for k in getattr(p, "extra_generation_params", {}).keys())
logger.debug(f"is_upscale_script={is_upscale_script}")
# Note: `inpaint_full_res` is "inpaint area" on UI. The flag is `True` when "Only masked"
# option is selected.
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
is_only_masked_inpaint = (
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.inpaint_full_res and
a1111_mask_image is not None
)
if (
'reference' not in unit.module
and is_only_masked_inpaint
and (is_upscale_script or unit.inpaint_crop_input_image)
):
logger.debug("Crop input image based on A1111 mask.")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
return input_image
@staticmethod
def bound_check_params(unit: external_code.ControlNetUnit) -> None:
"""
Checks and corrects negative parameters in ControlNetUnit 'unit'.
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
their default values if negative.
Args:
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
"""
cfg = preprocessor_sliders_config.get(
global_state.get_module_basename(unit.module), [])
defaults = {
param: cfg_default['value']
for param, cfg_default in zip(
("processor_res", 'threshold_a', 'threshold_b'), cfg)
if cfg_default is not None
}
for param, default_value in defaults.items():
value = getattr(unit, param)
if value < 0:
setattr(unit, param, default_value)
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
@staticmethod
def check_sd_version_compatible(unit: external_code.ControlNetUnit) -> None:
"""
Checks whether the given ControlNet unit has model compatible with the currently
active sd model. An exception is thrown if ControlNet unit is detected to be
incompatible.
"""
sd_version = global_state.get_sd_version()
assert sd_version != StableDiffusionVersion.UNKNOWN
if "revision" in unit.module.lower() and sd_version != StableDiffusionVersion.SDXL:
raise Exception(f"Preprocessor 'revision' only supports SDXL. Current SD base model is {sd_version}.")
# No need to check if the ControlModelType does not require model to be present.
if unit.model is None or unit.model.lower() == "none":
return
cnet_sd_version = StableDiffusionVersion.detect_from_model_name(unit.model)
if cnet_sd_version == StableDiffusionVersion.UNKNOWN:
logger.warn(f"Unable to determine version for ControlNet model '{unit.model}'.")
return
if not sd_version.is_compatible_with(cnet_sd_version):
raise Exception(f"ControlNet model {unit.model}({cnet_sd_version}) is not compatible with sd model({sd_version})")
@staticmethod
def get_target_dimensions(p: StableDiffusionProcessing) -> Tuple[int, int, int, int]:
"""Returns (h, w, hr_h, hr_w)."""
h = align_dim_latent(p.height)
w = align_dim_latent(p.width)
high_res_fix = (
isinstance(p, StableDiffusionProcessingTxt2Img)
and getattr(p, 'enable_hr', False)
)
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = align_dim_latent(hr_y)
hr_x = align_dim_latent(hr_x)
else:
hr_y = h
hr_x = w
return h, w, hr_y, hr_x
def controlnet_main_entry(self, p):
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
self.noise_modifier = None
setattr(p, 'controlnet_control_loras', [])
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore()
# always clear (~0.05s)
clear_all_secondary_control_models(unet)
if not batch_hijack.instance.is_batch:
self.enabled_units = Script.get_enabled_units(p)
batch_option_uint_separate = self.ui_batch_option_state[0] == external_code.BatchOption.SEPARATE.value
batch_option_style_align = self.ui_batch_option_state[1]
if len(self.enabled_units) == 0 and not batch_option_style_align:
self.latest_network = None
return
logger.info(f"unit_separate = {batch_option_uint_separate}, style_align = {batch_option_style_align}")
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
Script.clear_control_model_cache()
for idx, unit in enumerate(self.enabled_units):
unit.module = global_state.get_module_basename(unit.module)
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h, w, hr_y, hr_x = Script.get_target_dimensions(p)
for idx, unit in enumerate(self.enabled_units):
Script.bound_check_params(unit)
Script.check_sd_version_compatible(unit)
if (
"ip-adapter" in unit.module and
not global_state.ip_adapter_pairing_model[unit.module](unit.model)
):
logger.error(f"Invalid pair of IP-Adapter preprocessor({unit.module}) and model({unit.model}).\n"
"Please follow following pairing logic:\n"
+ global_state.ip_adapter_pairing_logic_text)
continue
if (
'inpaint_only' == unit.module and
issubclass(type(p), StableDiffusionProcessingImg2Img) and
p.image_mask is not None
):
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. Falls back to inpaint_global_harmonious.')
unit.module = 'inpaint'
if unit.module in model_free_preprocessors:
model_net = None
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
elif 'revision' in unit.module:
control_model_type = ControlModelType.ReVision
else:
raise Exception("Unable to determine control_model_type.")
else:
model_net, control_model_type = Script.load_control_model(p, unet, unit.model)
model_net.reset()
if control_model_type == ControlModelType.ControlLoRA:
control_lora = model_net.control_model
bind_control_lora(unet, control_lora)
p.controlnet_control_loras.append(control_lora)
input_image, resize_mode = Script.choose_input_image(p, unit, idx)
if isinstance(input_image, list):
assert unit.accepts_multiple_inputs()
input_images = input_image
else: # Following operations are only for single input image.
input_image = Script.try_crop_image_with_a1111_mask(p, unit, input_image, resize_mode)
input_image = np.ascontiguousarray(input_image.copy()).copy() # safe numpy
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
if unit.pixel_perfect:
unit.processor_res = external_code.pixel_perfect_resolution(
input_image,
target_H=h,
target_W=w,
resize_mode=resize_mode,
)
input_images = [input_image]
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
logger.info(f"Using preprocessor: {unit.module}")
logger.info(f'preprocessor resolution = {unit.processor_res}')
def store_detected_map(detected_map, module: str) -> None:
if unit.save_detected_map:
detected_maps.append((detected_map, module))
def preprocess_input_image(input_image: np.ndarray):
""" Preprocess single input image. """
detected_map, is_image = self.preprocessor[unit.module](
input_image,
res=unit.processor_res,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
low_vram=(
("clip" in unit.module or unit.module == "ip-adapter_face_id_plus") and
shared.opts.data.get("controlnet_clip_detector_on_cpu", False)
),
)
if high_res_fix:
if is_image:
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
store_detected_map(hr_detected_map, unit.module)
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
store_detected_map(detected_map, unit.module)
else:
control = detected_map
store_detected_map(input_image, unit.module)
if control_model_type == ControlModelType.T2I_StyleAdapter:
control = control['last_hidden_state']
if control_model_type == ControlModelType.ReVision:
control = control['image_embeds']
return control, hr_control
controls, hr_controls = list(zip(*[preprocess_input_image(img) for img in input_images]))
if len(controls) == len(hr_controls) == 1:
control = controls[0]
hr_control = hr_controls[0]
else:
control = controls
hr_control = hr_controls
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=unit.processor_res,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
global_average_pooling = (
control_model_type.is_controlnet() and
model_net.control_model.global_average_pooling
)
control_mode = external_code.control_mode_from_value(unit.control_mode)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=control,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=unit.advanced_weighting,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_control,
hr_option=HiResFixOption.from_value(unit.hr_option) if high_res_fix else HiResFixOption.BOTH,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
if 'inpaint_only' in unit.module:
final_inpaint_feed = hr_control if hr_control is not None else control
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = shared.opts.data.get("control_net_inpaint_blur_sigma", 7)
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
def inpaint_only_post_processing(x):
_, H, W = x.shape
if Hmask != H or Wmask != W:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
r = final_inpaint_raw.to(x.dtype).to(x.device)
m = final_inpaint_mask.to(x.dtype).to(x.device)
y = m * x.clip(0, 1) + (1 - m) * r
y = y.clip(0, 1)
return y
post_processors.append(inpaint_only_post_processing)
if 'recolor' in unit.module:
final_feed = hr_control if hr_control is not None else control
final_feed = final_feed.detach().cpu().numpy()
final_feed = np.ascontiguousarray(final_feed).copy()
final_feed = final_feed[0, 0, :, :].astype(np.float32)
final_feed = (final_feed * 255).clip(0, 255).astype(np.uint8)
Hfeed, Wfeed = final_feed.shape
if 'luminance' in unit.module:
def recolor_luminance_post_processing(x):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2LAB)
h[:, :, 0] = final_feed
h = cv2.cvtColor(h, cv2.COLOR_LAB2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_luminance_post_processing)
if 'intensity' in unit.module:
def recolor_intensity_post_processing(x):
C, H, W = x.shape
if Hfeed != H or Wfeed != W or C != 3:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
h = x.detach().cpu().numpy().transpose((1, 2, 0))
h = (h * 255).clip(0, 255).astype(np.uint8)
h = cv2.cvtColor(h, cv2.COLOR_RGB2HSV)
h[:, :, 2] = final_feed
h = cv2.cvtColor(h, cv2.COLOR_HSV2RGB)
h = (h.astype(np.float32) / 255.0).transpose((2, 0, 1))
y = torch.from_numpy(h).clip(0, 1).to(x)
return y
post_processors.append(recolor_intensity_post_processing)
if '+lama' in unit.module:
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
self.noise_modifier = forward_param.used_hint_cond_latent
del model_net
is_low_vram = any(unit.low_vram for unit in self.enabled_units)
for i, param in enumerate(forward_params):
if param.control_model_type == ControlModelType.IPAdapter:
param.control_model.hook(
model=unet,
preprocessor_outputs=param.hint_cond,
weight=param.weight,
dtype=torch.float32,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.Controlllite:
param.control_model.hook(
model=unet,
cond=param.hint_cond,
weight=param.weight,
start=param.start_guidance_percent,
end=param.stop_guidance_percent
)
if param.control_model_type == ControlModelType.InstantID:
# For instant_id we always expect ip-adapter model followed
# by ControlNet model.
assert i > 0, "InstantID control model should follow ipadapter model."
ip_adapter_param = forward_params[i - 1]
assert ip_adapter_param.control_model_type == ControlModelType.IPAdapter, \
"InstantID control model should follow ipadapter model."
control_model = ip_adapter_param.control_model
assert hasattr(control_model, "image_emb")
param.control_context_override = control_model.image_emb
self.latest_network = UnetHook(lowvram=is_low_vram)
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p,
batch_option_uint_separate=batch_option_uint_separate,
batch_option_style_align=batch_option_style_align)
self.detected_map = detected_maps
self.post_processors = post_processors
def controlnet_hack(self, p):
t = time.time()
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
tracemalloc.start()
setattr(self, "malloc_begin", tracemalloc.take_snapshot())
self.controlnet_main_entry(p)
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
logger.info("After hook malloc:")
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]:
logger.info(stat)
if len(self.enabled_units) > 0:
logger.info(f'ControlNet Hooked - Time = {time.time() - t}')
@staticmethod
def process_has_sdxl_refiner(p):
return getattr(p, 'refiner_checkpoint', None) is not None
def process(self, p, *args, **kwargs):
if not Script.process_has_sdxl_refiner(p):
self.controlnet_hack(p)
return
def before_process_batch(self, p, *args, **kwargs):
if self.noise_modifier is not None:
p.rng = HackedImageRNG(rng=p.rng,
noise_modifier=self.noise_modifier,
sd_model=p.sd_model)
self.noise_modifier = None
if Script.process_has_sdxl_refiner(p):
self.controlnet_hack(p)
return
def postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(len(images)):
images[i] = post_processor(images[i])
return
def postprocess(self, p, processed, *args):
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
clear_all_secondary_control_models(unet)
self.noise_modifier = None
for control_lora in getattr(p, 'controlnet_control_loras', []):
unbind_control_lora(control_lora)
p.controlnet_control_loras = []
self.post_processors = []
setattr(p, 'controlnet_vae_cache', None)
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
self.post_processors = []
if not batch_hijack.instance.is_batch:
self.enabled_units.clear()
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
for detect_map, module in self.detected_map:
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
if not os.path.isabs(detectmap_dir):
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
if module != "none":
os.makedirs(detectmap_dir, exist_ok=True)
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
save_image(img, detectmap_dir, module)
if self.latest_network is None:
return
if not batch_hijack.instance.is_batch:
if not shared.opts.data.get("control_net_no_detectmap", False):
if 'sd upscale' not in processor_params_flag:
if self.detected_map is not None:
for detect_map, module in self.detected_map:
if detect_map is None:
continue
detect_map = np.ascontiguousarray(detect_map.copy()).copy()
detect_map = external_code.visualize_inpaint_mask(detect_map)
processed.images.extend([
Image.fromarray(
detect_map.clip(0, 255).astype(np.uint8)
)
])
self.input_image = None
self.latest_network.restore()
self.latest_network = None
self.detected_map.clear()
gc.collect()
devices.torch_gc()
if getattr(shared.cmd_opts, 'controlnet_tracemalloc', False):
logger.info("After generation:")
for stat in tracemalloc.take_snapshot().compare_to(self.malloc_begin, "lineno")[:10]:
logger.info(stat)
tracemalloc.stop()
def batch_tab_process(self, p, batches, *args, **kwargs):
self.enabled_units = Script.get_enabled_units(p)
for unit_i, unit in enumerate(self.enabled_units):
unit.batch_images = iter([batch[unit_i] for batch in batches])
def batch_tab_process_each(self, p, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
unit.image = next(unit.batch_images)
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False):
output_images = getattr(processed, 'images', [])[processed.index_of_first_image:]
if output_images:
unit.image = np.array(output_images[0])
else:
logger.warning(f'Warning: No loopback image found for controlnet unit {unit_i}. Using control map from last batch iteration instead')
def batch_tab_postprocess(self, p, *args, **kwargs):
self.enabled_units.clear()
self.input_image = None
if self.latest_network is None: return
self.latest_network.restore()
self.latest_network = None
self.detected_map.clear()
def on_ui_settings():
section = ('control_net', "ControlNet")
shared.opts.add_option("control_net_detectedmap_dir", shared.OptionInfo(
global_state.default_detectedmap_dir, "Directory for detected maps auto saving", section=section))
shared.opts.add_option("control_net_models_path", shared.OptionInfo(
"", "Extra path to scan for ControlNet models (e.g. training output directory)", section=section))
shared.opts.add_option("control_net_modules_path", shared.OptionInfo(
"", "Path to directory containing annotator model directories (requires restart, overrides corresponding command line flag)", section=section))
shared.opts.add_option("control_net_unit_count", shared.OptionInfo(
3, "Multi-ControlNet: ControlNet unit number (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_model_cache_size", shared.OptionInfo(
2, "Model cache size (requires restart)", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}, section=section))
shared.opts.add_option("control_net_inpaint_blur_sigma", shared.OptionInfo(
7, "ControlNet inpainting Gaussian blur sigma", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=section))
shared.opts.add_option("control_net_no_detectmap", shared.OptionInfo(
False, "Do not append detectmap to output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_detectmap_autosaving", shared.OptionInfo(
False, "Allow detectmap auto saving", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_allow_script_control", shared.OptionInfo(
False, "Allow other script to control this extension", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("control_net_sync_field_args", shared.OptionInfo(
True, "Paste ControlNet parameters in infotext", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_show_batch_images_in_ui", shared.OptionInfo(
False, "Show batch images in gradio gallery output", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_increment_seed_during_batch", shared.OptionInfo(
False, "Increment seed after each controlnet batch iteration", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_openpose_edit", shared.OptionInfo(
False, "Disable openpose edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_disable_photopea_edit", shared.OptionInfo(
False, "Disable photopea edit", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_photopea_warning", shared.OptionInfo(
True, "Photopea popup warning", gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_ignore_noninpaint_mask", shared.OptionInfo(
False, "Ignore mask on ControlNet input image if control type is not inpaint",
gr.Checkbox, {"interactive": True}, section=section))
shared.opts.add_option("controlnet_clip_detector_on_cpu", shared.OptionInfo(
False, "Load CLIP preprocessor model on CPU",
gr.Checkbox, {"interactive": True}, section=section))
batch_hijack.instance.do_hijack()
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_infotext_pasted(Infotext.on_infotext_pasted)
script_callbacks.on_after_component(ControlNetUiGroup.on_after_component)
script_callbacks.on_before_reload(ControlNetUiGroup.reset)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。