代码拉取完成,页面将自动刷新
# TensorFlow is much easier to install using Anaconda, especially
# on Windows or when using a GPU. Please see the installation
# instructions in INSTALL.md
##### Core scientific packages
jupyter==1.0.0
matplotlib==3.3.2
numpy==1.18.5
pandas==1.1.3
scipy==1.5.3
##### Machine Learning packages
scikit-learn==0.23.2
# Optional: the XGBoost library is only used in chapter 7
xgboost==1.2.1
# Optional: the transformers library is only using in chapter 16
transformers==3.3.1
##### TensorFlow-related packages
# If you have a TF-compatible GPU and you want to enable GPU support, then
# replace tensorflow-serving-api with tensorflow-serving-api-gpu.
# Your GPU must have CUDA Compute Capability 3.5 or higher support, and
# you must install CUDA, cuDNN and more: see tensorflow.org for the detailed
# installation instructions.
tensorflow==2.3.1
# Optional: the TF Serving API library is just needed for chapter 19.
tensorflow-serving-api==2.3.0 # or tensorflow-serving-api-gpu if gpu
tensorboard==2.3.0
tensorboard-plugin-profile==2.3.0
tensorflow-datasets==4.0.1
tensorflow-hub==0.9.0
tensorflow-probability==0.11.1
# Optional: only used in chapter 13.
# NOT AVAILABLE ON WINDOWS
tfx==0.24.1
# Optional: only used in chapter 16.
# NOT AVAILABLE ON WINDOWS
tensorflow-addons==0.11.2
##### Reinforcement Learning library (chapter 18)
# There are a few dependencies you need to install first, check out:
# https://github.com/openai/gym#installing-everything
gym[atari]==0.17.3
# On Windows, install atari_py using:
# pip install --no-index -f https://github.com/Kojoley/atari-py/releases atari_py
tf-agents==0.6.0
##### Image manipulation
Pillow==8.0.0
graphviz==0.14.2
opencv-python==4.4.0.44
pyglet==1.4.11
#pyvirtualdisplay # needed in chapter 16, if on a headless server
# (i.e., without screen, e.g., Colab or VM)
##### Additional utilities
# Efficient jobs (caching, parallelism, persistence)
joblib==0.14.1
# Easy http requests
requests==2.24.0
# Nice utility to diff Jupyter Notebooks.
nbdime==2.1.0
# May be useful with Pandas for complex "where" clauses (e.g., Pandas
# tutorial).
numexpr==2.7.1
# Optional: these libraries can be useful in the classification chapter,
# exercise 4.
nltk==3.5
urlextract==1.1.0
# Optional: these libraries are only used in chapter 16
ftfy==5.8
# Optional: tqdm displays nice progress bars, ipywidgets for tqdm's notebook support
tqdm==4.50.2
ipywidgets==7.5.1
# Specific lib versions to avoid conflicts
attrs==19.3.0
cloudpickle==1.3.0
dill==0.3.1.1
gast==0.3.3
httplib2==0.17.4
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。