代码拉取完成,页面将自动刷新
同步操作将从 MiloHang/医学命名实体识别 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# coding: utf-8
# File: lstm_train.py
# Author: lhy<lhy_in_blcu@126.com,https://huangyong.github.io>
# Date: 18-12-24
import numpy as np
from keras import backend as K
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Embedding, Bidirectional, LSTM, Dense, TimeDistributed, Dropout
from keras_contrib.layers.crf import CRF
import matplotlib.pyplot as plt
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
class LSTMNER:
def __init__(self):
cur = '/'.join(os.path.abspath(__file__).split('/')[:-1])
self.train_path = os.path.join(cur, 'data/train.txt')
self.vocab_path = os.path.join(cur, 'model/vocab.txt')
self.embedding_file = os.path.join(cur, 'model/token_vec_300.bin')
self.model_path = os.path.join(cur, 'model/tokenvec_bilstm2_crf_model_20.h5')
self.datas, self.word_dict = self.build_data()
self.class_dict ={
'O':0,
'TREATMENT-I': 1,
'TREATMENT-B': 2,
'BODY-B': 3,
'BODY-I': 4,
'SIGNS-I': 5,
'SIGNS-B': 6,
'CHECK-B': 7,
'CHECK-I': 8,
'DISEASE-I': 9,
'DISEASE-B': 10
}
self.EMBEDDING_DIM = 300
self.EPOCHS = 5
self.BATCH_SIZE = 128
self.NUM_CLASSES = len(self.class_dict)
self.VOCAB_SIZE = len(self.word_dict)
self.TIME_STAMPS = 150
self.embedding_matrix = self.build_embedding_matrix()
'''构造数据集'''
def build_data(self):
datas = []
sample_x = []
sample_y = []
vocabs = {'UNK'}
for line in open(self.train_path):
line = line.rstrip().split('\t')
if not line:
continue
char = line[0]
if not char:
continue
cate = line[-1]
sample_x.append(char)
sample_y.append(cate)
vocabs.add(char)
if char in ['。','?','!','!','?']:
datas.append([sample_x, sample_y])
sample_x = []
sample_y = []
word_dict = {wd:index for index, wd in enumerate(list(vocabs))}
self.write_file(list(vocabs), self.vocab_path)
return datas, word_dict
'''将数据转换成keras所需的格式'''
def modify_data(self):
x_train = [[self.word_dict[char] for char in data[0]] for data in self.datas]
y_train = [[self.class_dict[label] for label in data[1]] for data in self.datas]
x_train = pad_sequences(x_train, self.TIME_STAMPS)
y = pad_sequences(y_train, self.TIME_STAMPS)
y_train = np.expand_dims(y, 2)
return x_train, y_train
'''保存字典文件'''
def write_file(self, wordlist, filepath):
with open(filepath, 'w+') as f:
f.write('\n'.join(wordlist))
'''加载预训练词向量'''
def load_pretrained_embedding(self):
embeddings_dict = {}
with open(self.embedding_file, 'r') as f:
for line in f:
values = line.strip().split(' ')
if len(values) < 300:
continue
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_dict[word] = coefs
print('Found %s word vectors.' % len(embeddings_dict))
return embeddings_dict
'''加载词向量矩阵'''
def build_embedding_matrix(self):
embedding_dict = self.load_pretrained_embedding()
embedding_matrix = np.zeros((self.VOCAB_SIZE + 1, self.EMBEDDING_DIM))
for word, i in self.word_dict.items():
embedding_vector = embedding_dict.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
'''使用预训练向量进行模型训练'''
def tokenvec_bilstm2_crf_model(self):
model = Sequential()
embedding_layer = Embedding(self.VOCAB_SIZE + 1,
self.EMBEDDING_DIM,
weights=[self.embedding_matrix],
input_length=self.TIME_STAMPS,
trainable=False,
mask_zero=True)
model.add(embedding_layer)
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Dropout(0.5))
model.add(Bidirectional(LSTM(64, return_sequences=True)))
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(self.NUM_CLASSES)))
crf_layer = CRF(self.NUM_CLASSES, sparse_target=True)
model.add(crf_layer)
model.compile('adam', loss=crf_layer.loss_function, metrics=[crf_layer.accuracy])
model.summary()
return model
'''训练模型'''
def train_model(self):
x_train, y_train = self.modify_data()
model = self.tokenvec_bilstm2_crf_model()
history = model.fit(x_train[:], y_train[:], validation_split=0.2, batch_size=self.BATCH_SIZE, epochs=self.EPOCHS)
self.draw_train(history)
model.save(self.model_path)
return model
'''绘制训练曲线'''
def draw_train(self, history):
# Plot training & validation accuracy values
plt.plot(history.history['acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train'], loc='upper left')
plt.show()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train'], loc='upper left')
plt.show()
# 7836/7836 [==============================] - 205s 26ms/step - loss: 17.1782 - acc: 0.9624
'''
6268/6268 [==============================] - 145s 23ms/step - loss: 18.5272 - acc: 0.7196 - val_loss: 15.7497 - val_acc: 0.8109
6268/6268 [==============================] - 142s 23ms/step - loss: 17.8446 - acc: 0.9099 - val_loss: 15.5915 - val_acc: 0.8378
6268/6268 [==============================] - 136s 22ms/step - loss: 17.7280 - acc: 0.9485 - val_loss: 15.5570 - val_acc: 0.8364
6268/6268 [==============================] - 133s 21ms/step - loss: 17.6918 - acc: 0.9593 - val_loss: 15.5187 - val_acc: 0.8451
6268/6268 [==============================] - 144s 23ms/step - loss: 17.6723 - acc: 0.9649 - val_loss: 15.4944 - val_acc: 0.8451
'''
if __name__ == '__main__':
ner = LSTMNER()
ner.train_model()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。