加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
5lstm.out 19.73 KB
一键复制 编辑 原始数据 按行查看 历史
君陵 提交于 2017-08-04 14:35 . RnnSeqLearn
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
2017-08-01 13:45:33
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:128] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 1.95GiB
Free memory: 1.70GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
New data, epoch 0
Step 0 Loss 0.693075
Step 100 Loss 0.702536
Step 200 Loss 0.693263
Step 300 Loss 0.694694
Step 400 Loss 0.693235
Step 500 Loss 0.693649
Step 600 Loss 0.697153
New data, epoch 1
Step 0 Loss 0.70023
Step 100 Loss 0.694348
Step 200 Loss 0.685359
Step 300 Loss 0.691395
Step 400 Loss 0.692562
Step 500 Loss 0.691672
Step 600 Loss 0.688142
New data, epoch 2
Step 0 Loss 0.639211
Step 100 Loss 0.540247
Step 200 Loss 0.486395
Step 300 Loss 0.256703
Step 400 Loss 0.229508
Step 500 Loss 0.00655493
Step 600 Loss 0.00361226
New data, epoch 3
Step 0 Loss 0.331145
Step 100 Loss 0.00343774
Step 200 Loss 0.00203222
Step 300 Loss 0.00154873
Step 400 Loss 0.00130564
Step 500 Loss 0.000980908
Step 600 Loss 0.000802613
New data, epoch 4
Step 0 Loss 0.617085
Step 100 Loss 0.000787882
Step 200 Loss 0.000836607
Step 300 Loss 0.000627805
Step 400 Loss 0.000562539
Step 500 Loss 0.000552182
Step 600 Loss 0.000505025
New data, epoch 5
Step 0 Loss 0.305307
Step 100 Loss 0.000498093
Step 200 Loss 0.000413593
Step 300 Loss 0.000369727
Step 400 Loss 0.000388876
Step 500 Loss 0.000279866
Step 600 Loss 0.000305379
New data, epoch 6
Step 0 Loss 0.377955
Step 100 Loss 0.00032697
Step 200 Loss 0.000335813
Step 300 Loss 0.000307929
Step 400 Loss 0.000248305
Step 500 Loss 0.000267511
Step 600 Loss 0.000220624
New data, epoch 7
Step 0 Loss 0.483397
Step 100 Loss 0.000257232
Step 200 Loss 0.000231793
Step 300 Loss 0.000214255
Step 400 Loss 0.000209651
Step 500 Loss 0.000214845
Step 600 Loss 0.000221228
New data, epoch 8
Step 0 Loss 0.644598
Step 100 Loss 0.000251683
Step 200 Loss 0.000221899
Step 300 Loss 0.000219194
Step 400 Loss 0.000207535
Step 500 Loss 0.000221767
Step 600 Loss 0.000182132
New data, epoch 9
Step 0 Loss 0.594106
Step 100 Loss 0.000330542
Step 200 Loss 0.00028938
Step 300 Loss 0.00025011
Step 400 Loss 0.000200774
Step 500 Loss 0.000210116
Step 600 Loss 0.000195004
New data, epoch 10
Step 0 Loss 0.550274
Step 100 Loss 0.00018999
Step 200 Loss 0.00017732
Step 300 Loss 0.000193957
Step 400 Loss 0.000189543
Step 500 Loss 0.000168928
Step 600 Loss 0.00014571
New data, epoch 11
Step 0 Loss 0.443772
Step 100 Loss 0.000207506
Step 200 Loss 0.000185262
Step 300 Loss 0.000192891
Step 400 Loss 0.000135431
Step 500 Loss 0.00015511
Step 600 Loss 0.000152353
New data, epoch 12
Step 0 Loss 0.448626
Step 100 Loss 0.000199234
Step 200 Loss 0.000159282
Step 300 Loss 0.000165512
Step 400 Loss 0.000157706
Step 500 Loss 0.000140888
Step 600 Loss 0.000141179
New data, epoch 13
Step 0 Loss 0.211398
Step 100 Loss 0.00014537
Step 200 Loss 0.00014103
Step 300 Loss 0.000123075
Step 400 Loss 0.000129645
Step 500 Loss 0.000125189
Step 600 Loss 0.000107285
New data, epoch 14
Step 0 Loss 0.34542
Step 100 Loss 0.000181666
Step 200 Loss 0.00013282
Step 300 Loss 0.000132841
Step 400 Loss 0.000116952
Step 500 Loss 0.000106666
Step 600 Loss 0.000114281
New data, epoch 15
Step 0 Loss 0.251003
Step 100 Loss 0.000133443
Step 200 Loss 0.000124987
Step 300 Loss 0.000117299
Step 400 Loss 0.000122627
Step 500 Loss 0.00011268
Step 600 Loss 0.000102846
New data, epoch 16
Step 0 Loss 0.309796
Step 100 Loss 0.000131386
Step 200 Loss 0.000123356
Step 300 Loss 0.000106107
Step 400 Loss 0.000104097
Step 500 Loss 0.000102863
Step 600 Loss 8.64251e-05
New data, epoch 17
Step 0 Loss 0.330222
Step 100 Loss 8.65133e-05
Step 200 Loss 9.05143e-05
Step 300 Loss 9.00199e-05
Step 400 Loss 8.72963e-05
Step 500 Loss 7.69839e-05
Step 600 Loss 8.45092e-05
New data, epoch 18
Step 0 Loss 0.287905
Step 100 Loss 0.000119468
Step 200 Loss 0.000102339
Step 300 Loss 8.93144e-05
Step 400 Loss 8.84369e-05
Step 500 Loss 8.17793e-05
Step 600 Loss 8.11345e-05
New data, epoch 19
Step 0 Loss 0.137761
Step 100 Loss 8.80335e-05
Step 200 Loss 8.75096e-05
Step 300 Loss 8.25584e-05
Step 400 Loss 8.47343e-05
Step 500 Loss 7.832e-05
Step 600 Loss 8.03337e-05
New data, epoch 20
Step 0 Loss 0.246188
Step 100 Loss 8.59002e-05
Step 200 Loss 6.62577e-05
Step 300 Loss 6.98444e-05
Step 400 Loss 7.42513e-05
Step 500 Loss 6.54153e-05
Step 600 Loss 6.38833e-05
New data, epoch 21
Step 0 Loss 0.220308
Step 100 Loss 8.70783e-05
Step 200 Loss 7.67181e-05
Step 300 Loss 7.16198e-05
Step 400 Loss 7.81279e-05
Step 500 Loss 7.33061e-05
Step 600 Loss 6.54202e-05
New data, epoch 22
Step 0 Loss 0.256626
Step 100 Loss 7.46048e-05
Step 200 Loss 6.97179e-05
Step 300 Loss 6.9142e-05
Step 400 Loss 7.39849e-05
Step 500 Loss 7.28118e-05
Step 600 Loss 5.83972e-05
New data, epoch 23
Step 0 Loss 0.261735
Step 100 Loss 8.23877e-05
Step 200 Loss 7.89711e-05
Step 300 Loss 7.27542e-05
Step 400 Loss 6.27436e-05
Step 500 Loss 6.21334e-05
Step 600 Loss 5.29966e-05
New data, epoch 24
Step 0 Loss 0.388478
Step 100 Loss 9.91383e-05
Step 200 Loss 9.22753e-05
Step 300 Loss 7.4323e-05
Step 400 Loss 6.80059e-05
Step 500 Loss 6.01103e-05
Step 600 Loss 6.38017e-05
New data, epoch 25
Step 0 Loss 0.124038
Step 100 Loss 7.74306e-05
Step 200 Loss 6.85391e-05
Step 300 Loss 6.45936e-05
Step 400 Loss 5.65817e-05
Step 500 Loss 5.46333e-05
Step 600 Loss 5.32413e-05
New data, epoch 26
Step 0 Loss 0.298578
Step 100 Loss 6.19127e-05
Step 200 Loss 6.08129e-05
Step 300 Loss 5.3982e-05
Step 400 Loss 5.23117e-05
Step 500 Loss 5.02727e-05
Step 600 Loss 5.72576e-05
New data, epoch 27
Step 0 Loss 0.219438
Step 100 Loss 5.8707e-05
Step 200 Loss 6.80781e-05
Step 300 Loss 5.72732e-05
Step 400 Loss 5.47653e-05
Step 500 Loss 5.42661e-05
Step 600 Loss 5.23832e-05
New data, epoch 28
Step 0 Loss 0.13952
Step 100 Loss 7.15931e-05
Step 200 Loss 5.38814e-05
Step 300 Loss 5.74431e-05
Step 400 Loss 4.73862e-05
Step 500 Loss 4.06696e-05
Step 600 Loss 4.1787e-05
New data, epoch 29
Step 0 Loss 0.121057
Step 100 Loss 4.17012e-05
Step 200 Loss 4.28105e-05
Step 300 Loss 4.00054e-05
Step 400 Loss 4.20635e-05
Step 500 Loss 3.58269e-05
Step 600 Loss 3.95635e-05
New data, epoch 30
Step 0 Loss 0.218958
Step 100 Loss 4.57e-05
Step 200 Loss 4.23894e-05
Step 300 Loss 3.88833e-05
Step 400 Loss 3.89072e-05
Step 500 Loss 3.84256e-05
Step 600 Loss 3.92043e-05
New data, epoch 31
Step 0 Loss 0.215972
Step 100 Loss 4.8287e-05
Step 200 Loss 4.96763e-05
Step 300 Loss 5.01432e-05
Step 400 Loss 4.16106e-05
Step 500 Loss 4.20827e-05
Step 600 Loss 4.10686e-05
New data, epoch 32
Step 0 Loss 0.110998
Step 100 Loss 3.7216e-05
Step 200 Loss 3.87021e-05
Step 300 Loss 3.93378e-05
Step 400 Loss 3.53437e-05
Step 500 Loss 3.55089e-05
Step 600 Loss 3.24225e-05
New data, epoch 33
Step 0 Loss 0.167151
Step 100 Loss 3.60733e-05
Step 200 Loss 3.38052e-05
Step 300 Loss 3.39324e-05
Step 400 Loss 3.27532e-05
Step 500 Loss 3.10445e-05
Step 600 Loss 2.75685e-05
New data, epoch 34
Step 0 Loss 0.1736
Step 100 Loss 3.96134e-05
Step 200 Loss 3.79245e-05
Step 300 Loss 4.46793e-05
Step 400 Loss 3.89562e-05
Step 500 Loss 3.60254e-05
Step 600 Loss 3.56044e-05
New data, epoch 35
Step 0 Loss 0.197018
Step 100 Loss 3.95285e-05
Step 200 Loss 3.71635e-05
Step 300 Loss 4.07078e-05
Step 400 Loss 3.93934e-05
Step 500 Loss 3.18424e-05
Step 600 Loss 3.65151e-05
New data, epoch 36
Step 0 Loss 0.176391
Step 100 Loss 6.44737e-05
Step 200 Loss 5.23351e-05
Step 300 Loss 4.49052e-05
Step 400 Loss 3.8238e-05
Step 500 Loss 3.45872e-05
Step 600 Loss 3.16199e-05
New data, epoch 37
Step 0 Loss 0.15409
Step 100 Loss 5.6021e-05
Step 200 Loss 4.3923e-05
Step 300 Loss 4.17787e-05
Step 400 Loss 4.12846e-05
Step 500 Loss 4.44601e-05
Step 600 Loss 3.6879e-05
New data, epoch 38
Step 0 Loss 0.202459
Step 100 Loss 4.62287e-05
Step 200 Loss 3.52038e-05
Step 300 Loss 3.43407e-05
Step 400 Loss 3.44742e-05
Step 500 Loss 3.29087e-05
Step 600 Loss 3.8106e-05
New data, epoch 39
Step 0 Loss 0.168183
Step 100 Loss 3.65035e-05
Step 200 Loss 3.71521e-05
Step 300 Loss 3.05898e-05
Step 400 Loss 3.56917e-05
Step 500 Loss 3.27768e-05
Step 600 Loss 2.90784e-05
New data, epoch 40
Step 0 Loss 0.11644
Step 100 Loss 2.85046e-05
Step 200 Loss 2.76702e-05
Step 300 Loss 2.55436e-05
Step 400 Loss 2.66292e-05
Step 500 Loss 2.16432e-05
Step 600 Loss 2.42609e-05
New data, epoch 41
Step 0 Loss 0.169656
Step 100 Loss 2.80976e-05
Step 200 Loss 2.56246e-05
Step 300 Loss 3.03769e-05
Step 400 Loss 2.72014e-05
Step 500 Loss 2.3247e-05
Step 600 Loss 2.71267e-05
New data, epoch 42
Step 0 Loss 0.11622
Step 100 Loss 2.83406e-05
Step 200 Loss 2.65574e-05
Step 300 Loss 2.6154e-05
Step 400 Loss 2.7438e-05
Step 500 Loss 2.63047e-05
Step 600 Loss 2.26556e-05
New data, epoch 43
Step 0 Loss 0.150705
Step 100 Loss 2.34917e-05
Step 200 Loss 2.24602e-05
Step 300 Loss 2.36443e-05
Step 400 Loss 1.82992e-05
Step 500 Loss 2.37492e-05
Step 600 Loss 1.9771e-05
New data, epoch 44
Step 0 Loss 0.167228
Step 100 Loss 3.13869e-05
Step 200 Loss 3.24826e-05
Step 300 Loss 2.68181e-05
Step 400 Loss 2.27127e-05
Step 500 Loss 2.40796e-05
Step 600 Loss 2.14795e-05
New data, epoch 45
Step 0 Loss 0.150284
Step 100 Loss 3.46486e-05
Step 200 Loss 3.63909e-05
Step 300 Loss 2.59154e-05
Step 400 Loss 2.5658e-05
Step 500 Loss 2.45042e-05
Step 600 Loss 2.3425e-05
New data, epoch 46
Step 0 Loss 0.430039
Step 100 Loss 3.33472e-05
Step 200 Loss 3.31518e-05
Step 300 Loss 2.76907e-05
Step 400 Loss 2.93578e-05
Step 500 Loss 2.99857e-05
Step 600 Loss 2.42705e-05
New data, epoch 47
Step 0 Loss 0.150384
Step 100 Loss 2.25873e-05
Step 200 Loss 2.75622e-05
Step 300 Loss 2.49842e-05
Step 400 Loss 2.27145e-05
Step 500 Loss 2.15479e-05
Step 600 Loss 2.38907e-05
New data, epoch 48
Step 0 Loss 0.172564
Step 100 Loss 2.78768e-05
Step 200 Loss 2.43118e-05
Step 300 Loss 1.72755e-05
Step 400 Loss 2.44977e-05
Step 500 Loss 1.91812e-05
Step 600 Loss 2.19992e-05
New data, epoch 49
Step 0 Loss 0.180024
Step 100 Loss 2.25492e-05
Step 200 Loss 2.51812e-05
Step 300 Loss 2.39733e-05
Step 400 Loss 2.5817e-05
Step 500 Loss 2.14621e-05
Step 600 Loss 2.42864e-05
New data, epoch 50
Step 0 Loss 0.148369
Step 100 Loss 2.23442e-05
Step 200 Loss 2.48888e-05
Step 300 Loss 2.37412e-05
Step 400 Loss 2.13667e-05
Step 500 Loss 2.12205e-05
Step 600 Loss 2.2047e-05
New data, epoch 51
Step 0 Loss 0.124008
Step 100 Loss 2.27034e-05
Step 200 Loss 2.42371e-05
Step 300 Loss 2.50223e-05
Step 400 Loss 2.02239e-05
Step 500 Loss 2.06388e-05
Step 600 Loss 2.39764e-05
New data, epoch 52
Step 0 Loss 0.202176
Step 100 Loss 2.18196e-05
Step 200 Loss 2.21662e-05
Step 300 Loss 2.01556e-05
Step 400 Loss 2.27845e-05
Step 500 Loss 2.03177e-05
Step 600 Loss 2.00761e-05
New data, epoch 53
Step 0 Loss 0.129252
Step 100 Loss 1.67415e-05
Step 200 Loss 1.74154e-05
Step 300 Loss 1.89953e-05
Step 400 Loss 2.01269e-05
Step 500 Loss 1.75601e-05
Step 600 Loss 1.63855e-05
New data, epoch 54
Step 0 Loss 0.177657
Step 100 Loss 2.11013e-05
Step 200 Loss 2.17847e-05
Step 300 Loss 2.36554e-05
Step 400 Loss 1.91542e-05
Step 500 Loss 2.17768e-05
Step 600 Loss 2.13985e-05
New data, epoch 55
Step 0 Loss 0.148953
Step 100 Loss 2.11076e-05
Step 200 Loss 2.03383e-05
Step 300 Loss 2.15669e-05
Step 400 Loss 1.70896e-05
Step 500 Loss 1.94737e-05
Step 600 Loss 1.88396e-05
New data, epoch 56
Step 0 Loss 0.156643
Step 100 Loss 2.21169e-05
Step 200 Loss 1.8714e-05
Step 300 Loss 1.9488e-05
Step 400 Loss 1.9097e-05
Step 500 Loss 1.97662e-05
Step 600 Loss 1.87887e-05
New data, epoch 57
Step 0 Loss 0.138567
Step 100 Loss 1.90287e-05
Step 200 Loss 1.68623e-05
Step 300 Loss 1.80687e-05
Step 400 Loss 1.84788e-05
Step 500 Loss 1.70101e-05
Step 600 Loss 1.69784e-05
New data, epoch 58
Step 0 Loss 0.123655
Step 100 Loss 1.79081e-05
Step 200 Loss 1.59261e-05
Step 300 Loss 1.59039e-05
Step 400 Loss 1.77889e-05
Step 500 Loss 1.64125e-05
Step 600 Loss 1.87235e-05
New data, epoch 59
Step 0 Loss 0.133701
Step 100 Loss 1.64633e-05
Step 200 Loss 1.4928e-05
Step 300 Loss 1.35372e-05
Step 400 Loss 1.54541e-05
Step 500 Loss 1.41682e-05
Step 600 Loss 1.27648e-05
New data, epoch 60
Step 0 Loss 0.159109
Step 100 Loss 1.98615e-05
Step 200 Loss 1.86996e-05
Step 300 Loss 1.4653e-05
Step 400 Loss 1.53285e-05
Step 500 Loss 1.62377e-05
Step 600 Loss 1.62377e-05
New data, epoch 61
Step 0 Loss 0.137817
Step 100 Loss 1.80067e-05
Step 200 Loss 1.78287e-05
Step 300 Loss 1.55733e-05
Step 400 Loss 1.67844e-05
Step 500 Loss 1.5052e-05
Step 600 Loss 1.58101e-05
New data, epoch 62
Step 0 Loss 0.158637
Step 100 Loss 1.67304e-05
Step 200 Loss 1.61407e-05
Step 300 Loss 1.63569e-05
Step 400 Loss 1.74075e-05
Step 500 Loss 1.64173e-05
Step 600 Loss 1.66303e-05
New data, epoch 63
Step 0 Loss 0.122957
Step 100 Loss 1.4982e-05
Step 200 Loss 1.49487e-05
Step 300 Loss 1.52967e-05
Step 400 Loss 1.51569e-05
Step 500 Loss 1.33004e-05
Step 600 Loss 1.51505e-05
New data, epoch 64
Step 0 Loss 0.120423
Step 100 Loss 1.45068e-05
Step 200 Loss 1.35897e-05
Step 300 Loss 1.5071e-05
Step 400 Loss 1.36787e-05
Step 500 Loss 1.44035e-05
Step 600 Loss 1.26758e-05
New data, epoch 65
Step 0 Loss 0.162493
Step 100 Loss 1.39362e-05
Step 200 Loss 1.43224e-05
Step 300 Loss 1.48787e-05
Step 400 Loss 1.51998e-05
Step 500 Loss 1.28522e-05
Step 600 Loss 1.43113e-05
New data, epoch 66
Step 0 Loss 0.135271
Step 100 Loss 1.29841e-05
Step 200 Loss 1.37471e-05
Step 300 Loss 1.33084e-05
Step 400 Loss 1.52205e-05
Step 500 Loss 1.28204e-05
Step 600 Loss 1.31208e-05
New data, epoch 67
Step 0 Loss 0.109189
Step 100 Loss 1.37614e-05
Step 200 Loss 1.34784e-05
Step 300 Loss 1.41126e-05
Step 400 Loss 1.2644e-05
Step 500 Loss 1.33211e-05
Step 600 Loss 1.44575e-05
New data, epoch 68
Step 0 Loss 0.169472
Step 100 Loss 1.77396e-05
Step 200 Loss 1.92034e-05
Step 300 Loss 1.39012e-05
Step 400 Loss 1.66922e-05
Step 500 Loss 1.18333e-05
Step 600 Loss 1.41094e-05
New data, epoch 69
Step 0 Loss 0.159026
Step 100 Loss 1.27632e-05
Step 200 Loss 1.2679e-05
Step 300 Loss 1.43161e-05
Step 400 Loss 1.34117e-05
Step 500 Loss 1.30096e-05
Step 600 Loss 1.3612e-05
New data, epoch 70
Step 0 Loss 0.129097
Step 100 Loss 1.83992e-05
Step 200 Loss 1.47881e-05
Step 300 Loss 1.37057e-05
Step 400 Loss 1.45195e-05
Step 500 Loss 1.34196e-05
Step 600 Loss 1.41031e-05
New data, epoch 71
Step 0 Loss 0.158012
Step 100 Loss 1.24549e-05
Step 200 Loss 1.07558e-05
Step 300 Loss 1.08448e-05
Step 400 Loss 1.04808e-05
Step 500 Loss 1.19208e-05
Step 600 Loss 1.2404e-05
New data, epoch 72
Step 0 Loss 0.143953
Step 100 Loss 1.16458e-05
Step 200 Loss 1.26043e-05
Step 300 Loss 1.31224e-05
Step 400 Loss 1.12501e-05
Step 500 Loss 1.04903e-05
Step 600 Loss 1.19494e-05
New data, epoch 73
Step 0 Loss 0.120285
Step 100 Loss 1.16856e-05
Step 200 Loss 1.16125e-05
Step 300 Loss 1.24548e-05
Step 400 Loss 9.58275e-06
Step 500 Loss 1.1506e-05
Step 600 Loss 1.04267e-05
New data, epoch 74
Step 0 Loss 0.147306
Step 100 Loss 1.20607e-05
Step 200 Loss 1.35881e-05
Step 300 Loss 1.12278e-05
Step 400 Loss 1.24326e-05
Step 500 Loss 1.24072e-05
Step 600 Loss 1.29889e-05
New data, epoch 75
Step 0 Loss 0.179511
Step 100 Loss 2.48689e-05
Step 200 Loss 2.14075e-05
Step 300 Loss 1.7695e-05
Step 400 Loss 1.97836e-05
Step 500 Loss 1.65984e-05
Step 600 Loss 1.63664e-05
New data, epoch 76
Step 0 Loss 0.119014
Step 100 Loss 1.43717e-05
Step 200 Loss 1.47373e-05
Step 300 Loss 1.3515e-05
Step 400 Loss 1.44496e-05
Step 500 Loss 1.46181e-05
Step 600 Loss 1.39569e-05
New data, epoch 77
Step 0 Loss 0.147352
Step 100 Loss 1.35134e-05
Step 200 Loss 1.35722e-05
Step 300 Loss 1.40029e-05
Step 400 Loss 1.18842e-05
Step 500 Loss 1.27473e-05
Step 600 Loss 1.24993e-05
New data, epoch 78
Step 0 Loss 0.135324
Step 100 Loss 9.17427e-06
Step 200 Loss 1.10434e-05
Step 300 Loss 1.19017e-05
Step 400 Loss 1.1889e-05
Step 500 Loss 1.0937e-05
Step 600 Loss 1.02678e-05
New data, epoch 79
Step 0 Loss 0.126484
Step 100 Loss 1.03457e-05
Step 200 Loss 1.03028e-05
Step 300 Loss 1.11515e-05
Step 400 Loss 1.22848e-05
Step 500 Loss 9.3825e-06
Step 600 Loss 9.58276e-06
New data, epoch 80
Step 0 Loss 0.133175
Step 100 Loss 1.17937e-05
Step 200 Loss 1.01438e-05
Step 300 Loss 1.14694e-05
Step 400 Loss 1.13391e-05
Step 500 Loss 1.0697e-05
Step 600 Loss 1.1684e-05
New data, epoch 81
Step 0 Loss 0.148069
Step 100 Loss 1.05825e-05
Step 200 Loss 9.91813e-06
Step 300 Loss 1.03457e-05
Step 400 Loss 1.0476e-05
Step 500 Loss 9.1552e-06
Step 600 Loss 9.50488e-06
New data, epoch 82
Step 0 Loss 0.11301
Step 100 Loss 9.9515e-06
Step 200 Loss 9.50011e-06
Step 300 Loss 9.54145e-06
Step 400 Loss 1.08003e-05
Step 500 Loss 1.15584e-05
Step 600 Loss 9.43972e-06
New data, epoch 83
Step 0 Loss 0.188257
Step 100 Loss 1.36326e-05
Step 200 Loss 1.0058e-05
Step 300 Loss 1.26646e-05
Step 400 Loss 1.03218e-05
Step 500 Loss 1.16284e-05
Step 600 Loss 1.04347e-05
New data, epoch 84
Step 0 Loss 0.139466
Step 100 Loss 1.41857e-05/usr/local/lib/python3.5/dist-packages/matplotlib/backend_bases.py:2453: MatplotlibDeprecationWarning: Using default event loop until function specific to this GUI is implemented
warnings.warn(str, mplDeprecation)
Step 200 Loss 1.40284e-05
Step 300 Loss 1.28427e-05
Step 400 Loss 1.13264e-05
Step 500 Loss 1.04411e-05
Step 600 Loss 9.40634e-06
New data, epoch 85
Step 0 Loss 0.119452
Step 100 Loss 1.15282e-05
Step 200 Loss 1.07256e-05
Step 300 Loss 1.10339e-05
Step 400 Loss 1.10562e-05
Step 500 Loss 1.08909e-05
Step 600 Loss 8.41929e-06
New data, epoch 86
Step 0 Loss 0.179493
Step 100 Loss 1.43081e-05
Step 200 Loss 1.16664e-05
Step 300 Loss 1.34005e-05
Step 400 Loss 1.26185e-05
Step 500 Loss 1.16554e-05
Step 600 Loss 1.15997e-05
New data, epoch 87
Step 0 Loss 0.147902
Step 100 Loss 9.9976e-06
Step 200 Loss 9.50011e-06
Step 300 Loss 1.00771e-05
Step 400 Loss 1.11388e-05
Step 500 Loss 9.72104e-06
Step 600 Loss 9.62886e-06
New data, epoch 88
Step 0 Loss 0.119512
Step 100 Loss 9.83071e-06
Step 200 Loss 1.09592e-05
Step 300 Loss 1.06111e-05
Step 400 Loss 8.92156e-06
Step 500 Loss 1.01756e-05
Step 600 Loss 1.01677e-05
New data, epoch 89
Step 0 Loss 0.169424
Step 100 Loss 1.04601e-05
Step 200 Loss 1.14503e-05
Step 300 Loss 9.55572e-06
Step 400 Loss 9.8466e-06
Step 500 Loss 9.75284e-06
Step 600 Loss 9.29507e-06
New data, epoch 90
Step 0 Loss 0.123001
Step 100 Loss 1.33084e-05
Step 200 Loss 1.1525e-05
Step 300 Loss 1.12914e-05
Step 400 Loss 1.13709e-05
Step 500 Loss 1.11531e-05
Step 600 Loss 1.2485e-05
New data, epoch 91
Step 0 Loss 0.208651
Step 100 Loss 1.54858e-05
Step 200 Loss 1.39902e-05
Step 300 Loss 1.12437e-05
Step 400 Loss 1.1676e-05
Step 500 Loss 1.11038e-05
Step 600 Loss 1.08019e-05
New data, epoch 92
Step 0 Loss 0.152673
Step 100 Loss 9.71786e-06
Traceback (most recent call last):
File "toy_mlstm.py", line 124, in <module>
File "toy_mlstm.py", line 86, in plot
File "/usr/local/lib/python3.5/dist-packages/matplotlib/pyplot.py", line 697, in savefig
res = fig.savefig(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/matplotlib/figure.py", line 1573, in savefig
self.canvas.print_figure(*args, **kwargs)
File "/usr/local/lib/python3.5/dist-packages/matplotlib/backend_bases.py", line 2252, in print_figure
**kwargs)
File "/usr/local/lib/python3.5/dist-packages/matplotlib/backends/backend_agg.py", line 550, in print_png
filename_or_obj = open(filename_or_obj, 'wb')
FileNotFoundError: [Errno 2] No such file or directory: '/home/ibot/NLP/tensorflow/RNN/test/toy_pic/5lstm/92_100.png'
2017-08-01 14:26:25
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化