代码拉取完成,页面将自动刷新
import numpy as np
from keras import backend as K
TAGS = ['rock', 'pop', 'alternative', 'indie', 'electronic',
'female vocalists', 'dance', '00s', 'alternative rock', 'jazz',
'beautiful', 'metal', 'chillout', 'male vocalists',
'classic rock', 'soul', 'indie rock', 'Mellow', 'electronica',
'80s', 'folk', '90s', 'chill', 'instrumental', 'punk',
'oldies', 'blues', 'hard rock', 'ambient', 'acoustic',
'experimental', 'female vocalist', 'guitar', 'Hip-Hop',
'70s', 'party', 'country', 'easy listening',
'sexy', 'catchy', 'funk', 'electro', 'heavy metal',
'Progressive rock', '60s', 'rnb', 'indie pop',
'sad', 'House', 'happy']
def librosa_exists():
try:
__import__('librosa')
except ImportError:
return False
else:
return True
def preprocess_input(audio_path, dim_ordering='default'):
'''Reads an audio file and outputs a Mel-spectrogram.
'''
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
assert dim_ordering in {'tf', 'th'}
if librosa_exists():
import librosa
else:
raise RuntimeError('Librosa is required to process audio files.\n' +
'Install it via `pip install librosa` \nor visit ' +
'http://librosa.github.io/librosa/ for details.')
# mel-spectrogram parameters
SR = 12000
N_FFT = 512
N_MELS = 96
HOP_LEN = 256
DURA = 29.12
src, sr = librosa.load(audio_path, sr=SR)
n_sample = src.shape[0]
n_sample_wanted = int(DURA * SR)
# trim the signal at the center
if n_sample < n_sample_wanted: # if too short
src = np.hstack((src, np.zeros((int(DURA * SR) - n_sample,))))
elif n_sample > n_sample_wanted: # if too long
src = src[(n_sample - n_sample_wanted) / 2:
(n_sample + n_sample_wanted) / 2]
logam = librosa.logamplitude
melgram = librosa.feature.melspectrogram
x = logam(melgram(y=src, sr=SR, hop_length=HOP_LEN,
n_fft=N_FFT, n_mels=N_MELS) ** 2,
ref_power=1.0)
if dim_ordering == 'th':
x = np.expand_dims(x, axis=0)
elif dim_ordering == 'tf':
x = np.expand_dims(x, axis=3)
return x
def decode_predictions(preds, top_n=5):
'''Decode the output of a music tagger model.
# Arguments
preds: 2-dimensional numpy array
top_n: integer in [0, 50], number of items to show
'''
assert len(preds.shape) == 2 and preds.shape[1] == 50
results = []
for pred in preds:
result = zip(TAGS, pred)
result = sorted(result, key=lambda x: x[1], reverse=True)
results.append(result[:top_n])
return results
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。