加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
music_tagger_crnn.py 5.76 KB
一键复制 编辑 原始数据 按行查看 历史
fchollet 提交于 2016-10-01 00:04 . Add music tagger model
# -*- coding: utf-8 -*-
'''MusicTaggerCRNN model for Keras.
Code by github.com/keunwoochoi.
# Reference:
- [Music-auto_tagging-keras](https://github.com/keunwoochoi/music-auto_tagging-keras)
'''
from __future__ import print_function
from __future__ import absolute_import
import numpy as np
from keras import backend as K
from keras.layers import Input, Dense
from keras.models import Model
from keras.layers import Dense, Dropout, Reshape, Permute
from keras.layers.convolutional import Convolution2D
from keras.layers.convolutional import MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import ELU
from keras.layers.recurrent import GRU
from keras.utils.data_utils import get_file
from keras.utils.layer_utils import convert_all_kernels_in_model
from audio_conv_utils import decode_predictions, preprocess_input
TH_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.3/music_tagger_crnn_weights_tf_kernels_th_dim_ordering.h5'
TF_WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.3/music_tagger_crnn_weights_tf_kernels_tf_dim_ordering.h5'
def MusicTaggerCRNN(weights='msd', input_tensor=None,
include_top=True):
'''Instantiate the MusicTaggerCRNN architecture,
optionally loading weights pre-trained
on Million Song Dataset. Note that when using TensorFlow,
for best performance you should set
`image_dim_ordering="tf"` in your Keras config
at ~/.keras/keras.json.
The model and the weights are compatible with both
TensorFlow and Theano. The dimension ordering
convention used by the model is the one
specified in your Keras config file.
For preparing mel-spectrogram input, see
`audio_conv_utils.py` in [applications](https://github.com/fchollet/keras/tree/master/keras/applications).
You will need to install [Librosa](http://librosa.github.io/librosa/)
to use it.
# Arguments
weights: one of `None` (random initialization)
or "msd" (pre-training on ImageNet).
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
include_top: whether to include the 1 fully-connected
layer (output layer) at the top of the network.
If False, the network outputs 32-dim features.
# Returns
A Keras model instance.
'''
if weights not in {'msd', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `msd` '
'(pre-training on Million Song Dataset).')
# Determine proper input shape
if K.image_dim_ordering() == 'th':
input_shape = (1, 96, 1366)
else:
input_shape = (96, 1366, 1)
if input_tensor is None:
melgram_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
melgram_input = Input(tensor=input_tensor, shape=input_shape)
else:
melgram_input = input_tensor
# Determine input axis
if K.image_dim_ordering() == 'th':
channel_axis = 1
freq_axis = 2
time_axis = 3
else:
channel_axis = 3
freq_axis = 1
time_axis = 2
# Input block
x = ZeroPadding2D(padding=(0, 37))(melgram_input)
x = BatchNormalization(axis=time_axis, name='bn_0_freq')(x)
# Conv block 1
x = Convolution2D(64, 3, 3, border_mode='same', name='conv1')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn1')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1')(x)
# Conv block 2
x = Convolution2D(128, 3, 3, border_mode='same', name='conv2')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn2')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(3, 3), strides=(3, 3), name='pool2')(x)
# Conv block 3
x = Convolution2D(128, 3, 3, border_mode='same', name='conv3')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn3')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool3')(x)
# Conv block 4
x = Convolution2D(128, 3, 3, border_mode='same', name='conv4')(x)
x = BatchNormalization(axis=channel_axis, mode=0, name='bn4')(x)
x = ELU()(x)
x = MaxPooling2D(pool_size=(4, 4), strides=(4, 4), name='pool4')(x)
# reshaping
if K.image_dim_ordering() == 'th':
x = Permute((3, 1, 2))(x)
x = Reshape((15, 128))(x)
# GRU block 1, 2, output
x = GRU(32, return_sequences=True, name='gru1')(x)
x = GRU(32, return_sequences=False, name='gru2')(x)
if include_top:
x = Dense(50, activation='sigmoid', name='output')(x)
# Create model
model = Model(melgram_input, x)
if weights is None:
return model
else:
# Load weights
if K.image_dim_ordering() == 'tf':
weights_path = get_file('music_tagger_crnn_weights_tf_kernels_tf_dim_ordering.h5',
TF_WEIGHTS_PATH,
cache_subdir='models')
else:
weights_path = get_file('music_tagger_crnn_weights_tf_kernels_th_dim_ordering.h5',
TH_WEIGHTS_PATH,
cache_subdir='models')
model.load_weights(weights_path, by_name=True)
if K.backend() == 'theano':
convert_all_kernels_in_model(model)
return model
if __name__ == '__main__':
model = MusicTaggerCRNN(weights='msd')
audio_path = 'audio_file.mp3'
melgram = preprocess_input(audio_path)
melgrams = np.expand_dims(melgram, axis=0)
preds = model.predict(melgrams)
print('Predicted:')
print(decode_predictions(preds))
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化