加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
darknet.py 16.35 KB
一键复制 编辑 原始数据 按行查看 历史
hanqingguo 提交于 2018-11-28 13:31 . add
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import matplotlib.pyplot as plt
from util import count_parameters as count
from util import convert2cpu as cpu
from util import predict_transform
class test_net(nn.Module):
def __init__(self, num_layers, input_size):
super(test_net, self).__init__()
self.num_layers= num_layers
self.linear_1 = nn.Linear(input_size, 5)
self.middle = nn.ModuleList([nn.Linear(5,5) for x in range(num_layers)])
self.output = nn.Linear(5,2)
def forward(self, x):
x = x.view(-1)
fwd = nn.Sequential(self.linear_1, *self.middle, self.output)
return fwd(x)
def get_test_input():
img = cv2.imread("dog-cycle-car.png")
img = cv2.resize(img, (416,416))
img_ = img[:,:,::-1].transpose((2,0,1))
img_ = img_[np.newaxis,:,:,:]/255.0
img_ = torch.from_numpy(img_).float()
img_ = Variable(img_)
return img_
def parse_cfg(cfgfile):
"""
Takes a configuration file
Returns a list of blocks. Each blocks describes a block in the neural
network to be built. Block is represented as a dictionary in the list
"""
file = open(cfgfile, 'r')
lines = file.read().split('\n') #store the lines in a list
lines = [x for x in lines if len(x) > 0] #get read of the empty lines
lines = [x for x in lines if x[0] != '#']
lines = [x.rstrip().lstrip() for x in lines]
block = {}
blocks = []
for line in lines:
if line[0] == "[": #This marks the start of a new block
if len(block) != 0:
blocks.append(block)
block = {}
block["type"] = line[1:-1].rstrip()
else:
key,value = line.split("=")
block[key.rstrip()] = value.lstrip()
blocks.append(block)
return blocks
# print('\n\n'.join([repr(x) for x in blocks]))
class MaxPoolStride1(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, x):
padded_x = F.pad(x, (0, self.pad, 0, self.pad), mode = "replicate")
pooled_x = F.max_pool2d(padded_x, self.kernel_size, padding = self.pad)
return pooled_x
class EmptyLayer(nn.Module):
def __init__(self):
super(EmptyLayer, self).__init__()
class DetectionLayer(nn.Module):
def __init__(self, anchors):
super(DetectionLayer, self).__init__()
self.anchors = anchors
def forward(self, x, inp_dim, num_classes, confidence):
x = x.data
global CUDA
prediction = x
prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA)
return prediction
class Upsample(nn.Module):
def __init__(self, stride=2):
super(Upsample, self).__init__()
self.stride = stride
def forward(self, x):
stride = self.stride
assert(x.data.dim() == 4)
B = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
ws = stride
hs = stride
x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W, stride).contiguous().view(B, C, H*stride, W*stride)
return x
#
class ReOrgLayer(nn.Module):
def __init__(self, stride = 2):
super(ReOrgLayer, self).__init__()
self.stride= stride
def forward(self,x):
assert(x.data.dim() == 4)
B,C,H,W = x.data.shape
hs = self.stride
ws = self.stride
assert(H % hs == 0), "The stride " + str(self.stride) + " is not a proper divisor of height " + str(H)
assert(W % ws == 0), "The stride " + str(self.stride) + " is not a proper divisor of height " + str(W)
x = x.view(B,C, H // hs, hs, W // ws, ws).transpose(-2,-3).contiguous()
x = x.view(B,C, H // hs * W // ws, hs, ws)
x = x.view(B,C, H // hs * W // ws, hs*ws).transpose(-1,-2).contiguous()
x = x.view(B, C, ws*hs, H // ws, W // ws).transpose(1,2).contiguous()
x = x.view(B, C*ws*hs, H // ws, W // ws)
return x
def create_modules(blocks):
net_info = blocks[0] #Captures the information about the input and pre-processing
module_list = nn.ModuleList()
index = 0 #indexing blocks helps with implementing route layers (skip connections)
prev_filters = 3
output_filters = []
for x in blocks:
module = nn.Sequential()
if (x["type"] == "net"):
continue
#If it's a convolutional layer
if (x["type"] == "convolutional"):
#Get the info about the layer
activation = x["activation"]
try:
batch_normalize = int(x["batch_normalize"])
bias = False
except:
batch_normalize = 0
bias = True
filters= int(x["filters"])
padding = int(x["pad"])
kernel_size = int(x["size"])
stride = int(x["stride"])
if padding:
pad = (kernel_size - 1) // 2
else:
pad = 0
#Add the convolutional layer
conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias = bias)
module.add_module("conv_{0}".format(index), conv)
#Add the Batch Norm Layer
if batch_normalize:
bn = nn.BatchNorm2d(filters)
module.add_module("batch_norm_{0}".format(index), bn)
#Check the activation.
#It is either Linear or a Leaky ReLU for YOLO
if activation == "leaky":
activn = nn.LeakyReLU(0.1, inplace = True)
module.add_module("leaky_{0}".format(index), activn)
#If it's an upsampling layer
#We use Bilinear2dUpsampling
elif (x["type"] == "upsample"):
stride = int(x["stride"])
# upsample = Upsample(stride)
upsample = nn.Upsample(scale_factor = 2, mode = "nearest")
module.add_module("upsample_{}".format(index), upsample)
#If it is a route layer
elif (x["type"] == "route"):
x["layers"] = x["layers"].split(',')
#Start of a route
start = int(x["layers"][0])
#end, if there exists one.
try:
end = int(x["layers"][1])
except:
end = 0
#Positive anotation
if start > 0:
start = start - index
if end > 0:
end = end - index
route = EmptyLayer()
module.add_module("route_{0}".format(index), route)
if end < 0:
filters = output_filters[index + start] + output_filters[index + end]
else:
filters= output_filters[index + start]
#shortcut corresponds to skip connection
if x["type"] == "shortcut":
from_ = int(x["from"])
shortcut = EmptyLayer()
module.add_module("shortcut_{}".format(index), shortcut)
#Yolo is the detection layer
if x["type"] == "yolo":
mask = x["mask"].split(",")
mask = [int(x) for x in mask]
anchors = x["anchors"].split(",")
anchors = [int(a) for a in anchors]
anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors),2)]
anchors = [anchors[i] for i in mask]
detection = DetectionLayer(anchors)
module.add_module("Detection_{}".format(index), detection)
module_list.append(module)
prev_filters = filters
output_filters.append(filters)
index += 1
return (net_info, module_list)
class Darknet(nn.Module):
def __init__(self, cfgfile):
super(Darknet, self).__init__()
self.blocks = parse_cfg(cfgfile)
self.net_info, self.module_list = create_modules(self.blocks)
self.header = torch.IntTensor([0,0,0,0])
self.seen = 0
def get_blocks(self):
return self.blocks
def get_module_list(self):
return self.module_list
def forward(self, x, CUDA):
detections = []
modules = self.blocks[1:]
outputs = {} #We cache the outputs for the route layer
write = 0
for i in range(len(modules)):
module_type = (modules[i]["type"])
if module_type == "convolutional" or module_type == "upsample":
x = self.module_list[i](x)
outputs[i] = x
elif module_type == "route":
layers = modules[i]["layers"]
layers = [int(a) for a in layers]
if (layers[0]) > 0:
layers[0] = layers[0] - i
if len(layers) == 1:
x = outputs[i + (layers[0])]
else:
if (layers[1]) > 0:
layers[1] = layers[1] - i
map1 = outputs[i + layers[0]]
map2 = outputs[i + layers[1]]
x = torch.cat((map1, map2), 1)
outputs[i] = x
elif module_type == "shortcut":
from_ = int(modules[i]["from"])
x = outputs[i-1] + outputs[i+from_]
outputs[i] = x
elif module_type == 'yolo':
anchors = self.module_list[i][0].anchors
#Get the input dimensions
inp_dim = int (self.net_info["height"])
#Get the number of classes
num_classes = int (modules[i]["classes"])
#Output the result
x = x.data
x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
if type(x) == int:
continue
if not write:
detections = x
write = 1
else:
detections = torch.cat((detections, x), 1)
outputs[i] = outputs[i-1]
try:
return detections
except:
return 0
def load_weights(self, weightfile):
#Open the weights file
fp = open(weightfile, "rb")
#The first 4 values are header information
# 1. Major version number
# 2. Minor Version Number
# 3. Subversion number
# 4. IMages seen
header = np.fromfile(fp, dtype = np.int32, count = 5)
self.header = torch.from_numpy(header)
self.seen = self.header[3]
#The rest of the values are the weights
# Let's load them up
weights = np.fromfile(fp, dtype = np.float32)
ptr = 0
for i in range(len(self.module_list)):
module_type = self.blocks[i + 1]["type"]
if module_type == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i+1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if (batch_normalize):
bn = model[1]
#Get the number of weights of Batch Norm Layer
num_bn_biases = bn.bias.numel()
#Load the weights
bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
ptr += num_bn_biases
bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
ptr += num_bn_biases
#Cast the loaded weights into dims of model weights.
bn_biases = bn_biases.view_as(bn.bias.data)
bn_weights = bn_weights.view_as(bn.weight.data)
bn_running_mean = bn_running_mean.view_as(bn.running_mean)
bn_running_var = bn_running_var.view_as(bn.running_var)
#Copy the data to model
bn.bias.data.copy_(bn_biases)
bn.weight.data.copy_(bn_weights)
bn.running_mean.copy_(bn_running_mean)
bn.running_var.copy_(bn_running_var)
else:
#Number of biases
num_biases = conv.bias.numel()
#Load the weights
conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
ptr = ptr + num_biases
#reshape the loaded weights according to the dims of the model weights
conv_biases = conv_biases.view_as(conv.bias.data)
#Finally copy the data
conv.bias.data.copy_(conv_biases)
#Let us load the weights for the Convolutional layers
num_weights = conv.weight.numel()
#Do the same as above for weights
conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
ptr = ptr + num_weights
conv_weights = conv_weights.view_as(conv.weight.data)
conv.weight.data.copy_(conv_weights)
def save_weights(self, savedfile, cutoff = 0):
if cutoff <= 0:
cutoff = len(self.blocks) - 1
fp = open(savedfile, 'wb')
# Attach the header at the top of the file
self.header[3] = self.seen
header = self.header
header = header.numpy()
header.tofile(fp)
# Now, let us save the weights
for i in range(len(self.module_list)):
module_type = self.blocks[i+1]["type"]
if (module_type) == "convolutional":
model = self.module_list[i]
try:
batch_normalize = int(self.blocks[i+1]["batch_normalize"])
except:
batch_normalize = 0
conv = model[0]
if (batch_normalize):
bn = model[1]
#If the parameters are on GPU, convert them back to CPU
#We don't convert the parameter to GPU
#Instead. we copy the parameter and then convert it to CPU
#This is done as weight are need to be saved during training
cpu(bn.bias.data).numpy().tofile(fp)
cpu(bn.weight.data).numpy().tofile(fp)
cpu(bn.running_mean).numpy().tofile(fp)
cpu(bn.running_var).numpy().tofile(fp)
else:
cpu(conv.bias.data).numpy().tofile(fp)
#Let us save the weights for the Convolutional layers
cpu(conv.weight.data).numpy().tofile(fp)
#
#dn = Darknet('cfg/yolov3.cfg')
#dn.load_weights("yolov3.weights")
#inp = get_test_input()
#a, interms = dn(inp)
#dn.eval()
#a_i, interms_i = dn(inp)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化