加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
贡献代码
同步代码
取消
提示: 由于 Git 不支持空文件夾,创建文件夹后会生成空的 .keep 文件
Loading...
README
MIT

py-Goldsberry

A Python Package for easily acquiring NBA Data for analysis

What is py-Goldsberry?

py-Goldsberry is designed to give the user easy access to data available from stats.nba.com in a form that facilitates innovative analysis. With a few simple commands, you can have access to virtually any data available on the site in an easy to analyze format. In fact, some of the data is in a less summarize form giving you the opportunity to work with the most raw data possible when you are attempting to answer questions that interest you.

Why was it built?

I attended the 2015 Sloan Sports Analytics conference and had the fortunate opportunity to listen to Kirk Goldsberry address the crowd regarding the state of analytics in sports (You can watch the talk here). One of the questions he addressed at the end was related to the availability of data (or lack thereof in some instances). Basically, he concluded that the lack of availability of some of the newest data is actually hindering the progression of analytics in sports. Innovation is now restricted to those with access to data instead of to the entire community of interested parties. I wrote (am writing) this package in an attempt to help address this issue in whatever small way I can.

This package is a work in progress. As the NBA continues to make more data available, I will do my best to update py-Goldsberry to reflect these additions. Currently, there is almost a cumbersome amount of data available from the NBA so dealing with what is there is a bit of a challenge.

UPDATE: The NBA has apparently masked some of the tables that were previously available. The log level data is no longer available. This is disappointing as there was a multitude of research opportunities availble with the use of the data. Hopefully, the NBA will make this data available again in the near future.

Getting started

To get started with py-Goldsberry, you need to install and load the package. From your terminal, run the following command:

pip install py-goldsberry

Once you have the package installed, you can load it into a Python session with the following command:

import goldsberry
import pandas as pd

The package is designed to work with pandas in that the output of each API call to the NBA website it returned in a format that is easily converted into a pandas dataframe.

Getting a List of Players

One of the key variables necessary to fully utilize py-Goldsberry is playerid. This is the unique id number assigned to each player by the NBA. py-Goldsberry has a top-level class PlayerList() built-in to give you quick access to a list of players and numbers.

players2010 = goldsberry.PlayerList(Season='2010-11')
players2010 = pd.DataFrame(players2010.players())
players2010.head()

If you want a list of every game during the current season use the GameIDs() class:

games = goldsberry.GameIDs()
games = pd.DataFrame(games.game_list())
games.head()

As you get started with py-goldsberry, TAB completion in either Jupyter or IPython is going to be your best friend. I'm working on documetation, but there is a great deal of it to do and I don't have that much time.

The MIT License (MIT) Copyright (c) 2015 Bradley Fay Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

简介

暂无描述 展开 收起
Python
MIT
取消

发行版

暂无发行版

贡献者

全部

近期动态

加载更多
不能加载更多了
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化