代码拉取完成,页面将自动刷新
# coding: utf-8
import cv2
import numpy as np
import glob
import math
from scipy.spatial import distance
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import metrics
def PerformanceEvaluation(match_L1,match_L2,match_cosine):
#storing only those elements that are correctly matched
correct_L1 = [l for l in match_L1 if l==1]
correct_L2 = [l for l in match_L2 if l==1]
correct_cosine = [l for l in match_cosine if l==1]
#calculating the correct recognition rates for L1,L2 and cosine similarity
crr_L1=len(correct_L1)/len(match_L1)
crr_L2=len(correct_L2)/len(match_L2)
crr_cosine=len(correct_cosine)/len(match_cosine)
return crr_L1*100,crr_L2*100,crr_cosine*100 #return CRR percentages
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。