加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
numbtraker.py 5.87 KB
一键复制 编辑 原始数据 按行查看 历史
mengfei 提交于 2024-11-10 03:59 . 梦飞openmv视觉小车源代码
# Edge Impulse - OpenMV Object Detection Example
import sensor, image, time,pyb,omv,math,utime,tf,lcd,gc
from pyb import UART,Pin,Timer,Servo
from machine import SPI
from umotor import UMOTOR
from pid import PID
from ultrasonic import ULTRASONIC
from button import BUTTON
from pycommon import PYCOMMON
common=PYCOMMON()
motor=UMOTOR() #声明电机驱动,B0,B1,B4,B5
button=BUTTON() #声明按键,梦飞openmv只有一个按键D8,因此直接内部指定了按键
lcd.init() # Initialize the lcd screen.
lcd.set_direction(2)
global THRESHOLD
#THRESHOLD = [(-3, 17, -7, 13, -12, 8)]
THRESHOLD =[(20, 77, -15, 15, -15, 15)]
nn_input_sz =64
count=0
#声明小尺寸的画布
img_to_matching=sensor.alloc_extra_fb(nn_input_sz,nn_input_sz,sensor.GRAYSCALE)
flag_lost =0
###################小车前后左右固定方向控制#####################
def run_forward():
motor.run(60,60)
time.sleep(2000) #前进2s后停止
motor.run(0,0)
def run_back():
motor.run(-60,-60)
time.sleep(2000) #后退2s后停止
motor.run(0,0)
def run_left(): #左转后前进
motor.run(60,-60)
time.sleep(500) #转90度
motor.run(60,60)
time.sleep(2000)
motor.run(0,0)
def run_right(): #右转后前进
motor.run(-60,60)
time.sleep(500) #转90度
motor.run(60,60)
time.sleep(2000)
motor.run(0,0)
#数字识别,返回数字结果
def number_recongnize(img,imege,blob):
global count
score=0
label='\0'
confidence=90
score_str=""
for obj in tf.classify(net,imege, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
out = obj.output() #数字识别结果
max_idx = out.index(max(out))#取概率最大的一个
score = int(out[max_idx]*100) #概率计算成%比
if score > confidence : #判断百分比是否达到阈值 #且数字结果是0-5才认为可取
label=labels[max_idx] #对数字进行赋值,0-9,可以用来显示和输出
score_str = "%s:%d%% "%(label, score)
img.draw_string(0, 0, score_str,scale=2, color=(255,255, 0))
count=count+1
else:
score_str = "??:??%"
count=0
if count>=3 : #多次识别都是同一个数字
count=0 #正确次数清空,方便下一次再重新统计
if max_idx>0 and max_idx<5 :
lcd.display(imege)
img.draw_image(imege,0, 0)
print("number:",label)#打印数字
return label
else:
return None
#单个数字识别
def Mnist_number(img,blob):
scale=1.0
snumber=0
if (blob) and (blob[3]<120) and (blob[2]<120) :
#按坐标和比例提取出色块,注意坐标长宽都向外扩大4个像素,避免图像不全
error_s=int((blob.h()-blob.w())/2) #目标位置,由于模板是正方形,这里做了目标扩展
roi1=(blob.x()-error_s-1,blob.y()-1,blob.h()+5,blob.h()+5)
scale=nn_input_sz/(blob.h()) #缩放比例系数
img_to_matching.clear()
img_to_matching.draw_image(img,0,0,x_scale=scale,y_scale=scale,roi=roi1)#将roi画到模板画布上
#img_to_matching.laplacian(1) #通过拉普拉斯变换,突出色彩分界线(数值越大效果越好,但越慢。所以用最小值,再提高画面亮度)
#img_to_matching.gamma_corr(gamma=1.2,contrast=25) #提高画面伽马值、对比度、亮度
img_to_matching.mode(1)
hist=img_to_matching.get_histogram()
thread=hist.get_threshold()
img_to_matching.binary([(0,thread[0])]) #这个阈值适合白字黑底
return number_recongnize(img,img_to_matching,blob)
else :
return None
def find_number_control(img,mode=1):
global number_lost,THRESHOLD
global pan_angle,tilt_angle
label='\0'
max_object=None
blobs=img.find_blobs(THRESHOLD,area_threshold=150) #寻找色块
if len(blobs):
max_object=common.find_max_object(blobs)
label=Mnist_number(img,blob=max_object)
img.draw_rectangle(max_object.rect(),color=(255,0,0))
if (label=='1'):
run_forward() #前进
print("go forward")
if (label=='2'):
run_back() #后退
print("go back")
if (label=='3'):
run_left() #左转
print("go left")
if (label=='4'):
run_right() #右转
print("go right")
else :
motor.run(0,0)
labels=['0','1','2','3','4','5','6','7','8','9']
try:
# load the model, alloc the model file on the heap if we have at least 64K free after loading
#net = tf.load("mnist_valid_f.tflite",load_to_fb=True)
labels,net = tf.load_builtin_model("mnist")
except Exception as e:
raise Exception('Failed to load "mnist", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
print(net)
##############################摄像头初始化部分#####################
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((128, 128)) # Set 240x240 window.
clock = time.clock() # Tracks FPS. 设置一个定时器用来计算帧率
while True:
clock.tick()
img = sensor.snapshot()
find_number_control(img)
lcd.display(img)
THRESHOLD=common.auto_color_mask(img,lcd,THRESHOLD,15,12)
print(clock.fps(), "fps", end="\n\n")
if button.state():
click_timer=time.ticks() #开始计时
while button.state(): pass #等待按键抬起
if time.ticks()-click_timer>2000: #按键时长超过2s
break #循环退出,回到主界面
else :
click_timer=time.ticks()#计时更新
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化