代码拉取完成,页面将自动刷新
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import numpy as np
from util import AverageMeter, ProgressMeter, accuracy, parse_gpus
from checkpoint import save_checkpoint, load_checkpoint
from thop import profile
from networks.imagenet import create_net
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
help='model architecture (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default="0",
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument("--ckpt", default="./ckpts/",
help="folder to output checkpoints")
parser.add_argument("--attention_type", type=str, default="none",
help="attention type (possible choices none | se | cbam | simam)")
parser.add_argument("--attention_param", type=float, default=4,
help="attention parameter (reduction factor in se and cbam, e_lambda in simam)")
parser.add_argument("--log_freq", type=int, default=500,
help="log frequency to file")
parser.add_argument("--cos_lr", action='store_true',
help='use cosine learning rate')
parser.add_argument("--save_weights", default=None, type=str, metavar='PATH',
help='save weights by CPU for mmdetection')
best_acc1 = 0
def main():
args = parser.parse_args()
args.ckpt += "imagenet"
args.ckpt += "-" + args.arch
if args.attention_type.lower() != "none":
args.ckpt += "-" + args.attention_type
if args.attention_type.lower() != "none":
args.ckpt += "-param" + str(args.attention_param)
args.gpu = parse_gpus(args.gpu)
if args.gpu is not None:
args.device = torch.device("cuda:{}".format(args.gpu[0]))
else:
args.device = torch.device("cpu")
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
args.ckpt += '-seed' + str(args.seed)
if not os.path.isdir(args.ckpt):
os.makedirs(args.ckpt)
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
model = create_net(args)
x = torch.randn(1, 3, 224, 224)
flops, params = profile(model, inputs=(x,))
print("model [%s] - params: %.6fM" % (args.arch, params / 1e6))
print("model [%s] - FLOPs: %.6fG" % (args.arch, flops / 1e9))
log_file = os.path.join(args.ckpt, "log.txt")
if os.path.exists(log_file):
args.log_file = open(log_file, mode="a")
else:
args.log_file = open(log_file, mode="w")
args.log_file.write("Network - " + args.arch + "\n")
args.log_file.write("Attention Module - " + args.attention_type + "\n")
args.log_file.write("Params - " % str(params) + "\n")
args.log_file.write("FLOPs - " % str(flops) + "\n")
args.log_file.write("--------------------------------------------------" + "\n")
args.log_file.close()
if not torch.cuda.is_available():
print('using CPU, this will be slow')
elif args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.device)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.device)
model = model.to(args.gpu[0])
model = torch.nn.DataParallel(model, args.gpu)
print(model)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.resume:
model, optimizer, best_acc1, start_epoch = load_checkpoint(args, model, optimizer)
args.start_epoch = start_epoch
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.save_weights is not None: # "deparallelize" saved weights
print("=> saving 'deparallelized' weights [%s]" % args.save_weights)
model = model.module
model = model.cpu()
torch.save({'state_dict': model.state_dict()}, args.save_weights, _use_new_zipfile_serialization=False)
return
if args.evaluate:
args.log_file = open(log_file, mode="a")
validate(val_loader, model, criterion, args)
args.log_file.close()
return
if args.cos_lr:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
for epoch in range(args.start_epoch):
scheduler.step()
for epoch in range(args.start_epoch, args.epochs):
args.log_file = open(log_file, mode="a")
if args.distributed:
train_sampler.set_epoch(epoch)
if(not args.cos_lr):
adjust_learning_rate(optimizer, epoch, args)
else:
scheduler.step()
print('[%03d] %.5f'%(epoch, scheduler.get_lr()[0]))
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
args.log_file.close()
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc": best_acc1,
"optimizer" : optimizer.state_dict(),
}, is_best, epoch, save_path=args.ckpt)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
param_groups = optimizer.param_groups[0]
curr_lr = param_groups["lr"]
# switch to train mode
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.to(args.device, non_blocking=True)
if torch.cuda.is_available():
target = target.to(args.device, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
epoch_msg = progress.get_message(i)
epoch_msg += ("\tLr {:.4f}".format(curr_lr))
print(epoch_msg)
if i % args.log_freq == 0:
args.log_file.write(epoch_msg + "\n")
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.to(args.device, non_blocking=True)
if torch.cuda.is_available():
target = target.to(args.device, non_blocking=True)
# compute outputs
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
epoch_msg = progress.get_message(i)
print(epoch_msg)
# TODO: this should also be done with the ProgressMeter
# print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
# .format(top1=top1, top5=top5))
epoch_msg = '----------- Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f} -----------'.format(top1=top1, top5=top5)
print(epoch_msg)
args.log_file.write(epoch_msg + "\n")
return top1.avg
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。