代码拉取完成,页面将自动刷新
from models.synthesizer.inference import Synthesizer
from models.encoder import inference as encoder
from models.vocoder.hifigan import inference as gan_vocoder
from pathlib import Path
import numpy as np
import soundfile as sf
import torch
import sys
import os
import re
import cn2an
vocoder = gan_vocoder
def gen_one_wav(synthesizer, in_fpath, embed, texts, file_name, seq):
embeds = [embed] * len(texts)
# If you know what the attention layer alignments are, you can retrieve them here by
# passing return_alignments=True
specs = synthesizer.synthesize_spectrograms(texts, embeds, style_idx=-1, min_stop_token=4, steps=400)
#spec = specs[0]
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
# If seed is specified, reset torch seed and reload vocoder
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
# spectrogram, the more time-efficient the vocoder.
generated_wav, output_sample_rate = vocoder.infer_waveform(spec)
# Add breaks
b_ends = np.cumsum(np.array(breaks) * synthesizer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * synthesizer.sample_rate))] * len(breaks)
generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
## Post-generation
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
# pad it.
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
generated_wav = encoder.preprocess_wav(generated_wav)
generated_wav = generated_wav / np.abs(generated_wav).max() * 0.97
# Save it on the disk
model=os.path.basename(in_fpath)
filename = "%s_%d_%s.wav" %(file_name, seq, model)
sf.write(filename, generated_wav, synthesizer.sample_rate)
print("\nSaved output as %s\n\n" % filename)
def generate_wav(enc_model_fpath, syn_model_fpath, voc_model_fpath, in_fpath, input_txt, file_name):
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device_id)
## Print some environment information (for debugging purposes)
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
"%.1fGb total memory.\n" %
(torch.cuda.device_count(),
device_id,
gpu_properties.name,
gpu_properties.major,
gpu_properties.minor,
gpu_properties.total_memory / 1e9))
else:
print("Using CPU for inference.\n")
print("Preparing the encoder, the synthesizer and the vocoder...")
encoder.load_model(enc_model_fpath)
synthesizer = Synthesizer(syn_model_fpath)
vocoder.load_model(voc_model_fpath)
encoder_wav = synthesizer.load_preprocess_wav(in_fpath)
embed, partial_embeds, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
texts = input_txt.split("\n")
seq=0
each_num=1500
punctuation = '!,。、,' # punctuate and split/clean text
processed_texts = []
cur_num = 0
for text in texts:
for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'):
if processed_text:
processed_texts.append(processed_text.strip())
cur_num += len(processed_text.strip())
if cur_num > each_num:
seq = seq +1
gen_one_wav(synthesizer, in_fpath, embed, processed_texts, file_name, seq)
processed_texts = []
cur_num = 0
if len(processed_texts)>0:
seq = seq +1
gen_one_wav(synthesizer, in_fpath, embed, processed_texts, file_name, seq)
if (len(sys.argv)>=3):
my_txt = ""
print("reading from :", sys.argv[1])
with open(sys.argv[1], "r") as f:
for line in f.readlines():
#line = line.strip('\n')
my_txt += line
txt_file_name = sys.argv[1]
wav_file_name = sys.argv[2]
output = cn2an.transform(my_txt, "an2cn")
print(output)
generate_wav(
Path("encoder/saved_models/pretrained.pt"),
Path("synthesizer/saved_models/mandarin.pt"),
Path("vocoder/saved_models/pretrained/g_hifigan.pt"), wav_file_name, output, txt_file_name
)
else:
print("please input the file name")
exit(1)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。