代码拉取完成,页面将自动刷新
# v1: initial release
# v2: add open and save folder icons
# v3: Add new Utilities tab for Dreambooth folder preparation
# v3.1: Adding captionning of images to utilities
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import argparse
from datetime import datetime
from library.common_gui import (
get_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
run_cmd_advanced_training,
run_cmd_training,
update_my_data,
check_if_model_exist,
output_message,
verify_image_folder_pattern,
SaveConfigFile,
save_to_file,
)
from library.class_configuration_file import ConfigurationFile
from library.class_source_model import SourceModel
from library.class_basic_training import BasicTraining
from library.class_advanced_training import AdvancedTraining
from library.class_folders import Folders
from library.class_command_executor import CommandExecutor
from library.class_sdxl_parameters import SDXLParameters
from library.tensorboard_gui import (
gradio_tensorboard,
start_tensorboard,
stop_tensorboard,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.dataset_balancing_gui import gradio_dataset_balancing_tab
from library.utilities import utilities_tab
from library.class_sample_images import SampleImages, run_cmd_sample
from library.custom_logging import setup_logging
from library.localization_ext import add_javascript
# Set up logging
log = setup_logging()
# Setup command executor
executor = CommandExecutor()
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get("label") == "True" else False
if save_as_bool:
log.info("Save as...")
file_path = get_saveasfile_path(file_path)
else:
log.info("Save...")
if file_path == None or file_path == "":
file_path = get_saveasfile_path(file_path)
if file_path == None or file_path == "":
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as"],
)
return file_path
def open_configuration(
ask_for_file,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
ask_for_file = True if ask_for_file.get("label") == "True" else False
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == "" and not file_path == None:
# load variables from JSON file
with open(file_path, "r") as f:
my_data = json.load(f)
log.info("Loading config...")
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ["ask_for_file", "file_path"]:
values.append(my_data.get(key, value))
return tuple(values)
def train_model(
headless,
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
learning_rate_te,
learning_rate_te1,
learning_rate_te2,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training_pct,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_train_steps,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list, # Keep this. Yes, it is unused here but required given the common list used
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
v_pred_like_loss,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
lr_scheduler_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
print_only_bool = True if print_only.get("label") == "True" else False
log.info(f"Start training Dreambooth...")
headless_bool = True if headless.get("label") == "True" else False
if pretrained_model_name_or_path == "":
output_message(
msg="Source model information is missing", headless=headless_bool
)
return
if train_data_dir == "":
output_message(msg="Image folder path is missing", headless=headless_bool)
return
if not os.path.exists(train_data_dir):
output_message(msg="Image folder does not exist", headless=headless_bool)
return
if not verify_image_folder_pattern(train_data_dir):
return
if reg_data_dir != "":
if not os.path.exists(reg_data_dir):
output_message(
msg="Regularisation folder does not exist",
headless=headless_bool,
)
return
if not verify_image_folder_pattern(reg_data_dir):
return
if output_dir == "":
output_message(msg="Output folder path is missing", headless=headless_bool)
return
if check_if_model_exist(
output_name, output_dir, save_model_as, headless=headless_bool
):
return
# if sdxl:
# output_message(
# msg='Dreambooth training is not compatible with SDXL models yet..',
# headless=headless_bool,
# )
# return
# if optimizer == 'Adafactor' and lr_warmup != '0':
# output_message(
# msg="Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.",
# title='Warning',
# headless=headless_bool,
# )
# lr_warmup = '0'
# Get a list of all subfolders in train_data_dir, excluding hidden folders
subfolders = [
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f)) and not f.startswith(".")
]
# Check if subfolders are present. If not let the user know and return
if not subfolders:
log.info(f"No {subfolders} were found in train_data_dir can't train...")
return
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
try:
repeats = int(folder.split("_")[0])
except ValueError:
log.info(
f"Subfolder {folder} does not have a proper repeat value, please correct the name or remove it... can't train..."
)
continue
# Count the number of images in the folder
num_images = len(
[
f
for f, lower_f in (
(file, file.lower())
for file in os.listdir(os.path.join(train_data_dir, folder))
)
if lower_f.endswith((".jpg", ".jpeg", ".png", ".webp"))
]
)
if num_images == 0:
log.info(f"{folder} folder contain no images, skipping...")
else:
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
log.info(f"Folder {folder} : steps {steps}")
if total_steps == 0:
log.info(f"No images were found in folder {train_data_dir}... please rectify!")
return
# Print the result
# log.info(f"{total_steps} total steps")
if reg_data_dir == "":
reg_factor = 1
else:
log.info(
f"Regularisation images are used... Will double the number of steps required..."
)
reg_factor = 2
if max_train_steps == "" or max_train_steps == "0":
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps)
/ int(train_batch_size)
/ int(gradient_accumulation_steps)
* int(epoch)
* int(reg_factor)
)
)
log.info(
f"max_train_steps ({total_steps} / {train_batch_size} / {gradient_accumulation_steps} * {epoch} * {reg_factor}) = {max_train_steps}"
)
# calculate stop encoder training
if int(stop_text_encoder_training_pct) == -1:
stop_text_encoder_training = -1
elif stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
log.info(f"stop_text_encoder_training = {stop_text_encoder_training}")
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
log.info(f"lr_warmup_steps = {lr_warmup_steps}")
# run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db.py"'
run_cmd = (
f"accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process}"
)
if sdxl:
run_cmd += f' "./sdxl_train.py"'
else:
run_cmd += f' "./train_db.py"'
if v2:
run_cmd += " --v2"
if v_parameterization:
run_cmd += " --v_parameterization"
if enable_bucket:
run_cmd += f" --enable_bucket --min_bucket_reso={min_bucket_reso} --max_bucket_reso={max_bucket_reso}"
if no_token_padding:
run_cmd += " --no_token_padding"
if weighted_captions:
run_cmd += " --weighted_captions"
run_cmd += f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution="{max_resolution}"'
run_cmd += f' --output_dir="{output_dir}"'
if not logging_dir == "":
run_cmd += f' --logging_dir="{logging_dir}"'
if not stop_text_encoder_training == 0:
run_cmd += f" --stop_text_encoder_training={stop_text_encoder_training}"
if not save_model_as == "same as source model":
run_cmd += f" --save_model_as={save_model_as}"
# if not resume == '':
# run_cmd += f' --resume={resume}'
if not float(prior_loss_weight) == 1.0:
run_cmd += f" --prior_loss_weight={prior_loss_weight}"
if full_bf16:
run_cmd += " --full_bf16"
if not vae == "":
run_cmd += f' --vae="{vae}"'
if not output_name == "":
run_cmd += f' --output_name="{output_name}"'
if not lr_scheduler_num_cycles == "":
run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
else:
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
if not lr_scheduler_power == "":
run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'
if int(max_token_length) > 75:
run_cmd += f" --max_token_length={max_token_length}"
if not max_train_epochs == "":
run_cmd += f' --max_train_epochs="{max_train_epochs}"'
if not max_data_loader_n_workers == "":
run_cmd += f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
if int(gradient_accumulation_steps) > 1:
run_cmd += f" --gradient_accumulation_steps={int(gradient_accumulation_steps)}"
if sdxl:
run_cmd += f' --learning_rate_te1="{learning_rate_te1}"'
run_cmd += f' --learning_rate_te2="{learning_rate_te2}"'
else:
run_cmd += f' --learning_rate_te="{learning_rate_te}"'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
cache_latents_to_disk=cache_latents_to_disk,
optimizer=optimizer,
optimizer_args=optimizer_args,
lr_scheduler_args=lr_scheduler_args,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
max_token_length=max_token_length,
resume=resume,
save_state=save_state,
mem_eff_attn=mem_eff_attn,
clip_skip=clip_skip,
flip_aug=flip_aug,
color_aug=color_aug,
shuffle_caption=shuffle_caption,
gradient_checkpointing=gradient_checkpointing,
full_fp16=full_fp16,
xformers=xformers,
keep_tokens=keep_tokens,
persistent_data_loader_workers=persistent_data_loader_workers,
bucket_no_upscale=bucket_no_upscale,
random_crop=random_crop,
bucket_reso_steps=bucket_reso_steps,
v_pred_like_loss=v_pred_like_loss,
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
caption_dropout_rate=caption_dropout_rate,
noise_offset_type=noise_offset_type,
noise_offset=noise_offset,
adaptive_noise_scale=adaptive_noise_scale,
multires_noise_iterations=multires_noise_iterations,
multires_noise_discount=multires_noise_discount,
additional_parameters=additional_parameters,
vae_batch_size=vae_batch_size,
min_snr_gamma=min_snr_gamma,
save_every_n_steps=save_every_n_steps,
save_last_n_steps=save_last_n_steps,
save_last_n_steps_state=save_last_n_steps_state,
use_wandb=use_wandb,
wandb_api_key=wandb_api_key,
scale_v_pred_loss_like_noise_pred=scale_v_pred_loss_like_noise_pred,
min_timestep=min_timestep,
max_timestep=max_timestep,
)
run_cmd += run_cmd_sample(
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
output_dir,
)
if print_only_bool:
log.warning(
"Here is the trainer command as a reference. It will not be executed:\n"
)
print(run_cmd)
save_to_file(run_cmd)
else:
# Saving config file for model
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
file_path = os.path.join(output_dir, f"{output_name}_{formatted_datetime}.json")
log.info(f"Saving training config to {file_path}...")
SaveConfigFile(
parameters=parameters,
file_path=file_path,
exclusion=["file_path", "save_as", "headless", "print_only"],
)
log.info(run_cmd)
# Run the command
executor.execute_command(run_cmd=run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f"{output_dir}/{output_name}")
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(output_dir, v2, v_parameterization, output_name)
def dreambooth_tab(
# train_data_dir=gr.Textbox(),
# reg_data_dir=gr.Textbox(),
# output_dir=gr.Textbox(),
# logging_dir=gr.Textbox(),
headless=False,
):
dummy_db_true = gr.Label(value=True, visible=False)
dummy_db_false = gr.Label(value=False, visible=False)
dummy_headless = gr.Label(value=headless, visible=False)
with gr.Tab("Training"):
gr.Markdown("Train a custom model using kohya dreambooth python code...")
# Setup Configuration Files Gradio
config = ConfigurationFile(headless)
source_model = SourceModel(headless=headless)
with gr.Tab("Folders"):
folders = Folders(headless=headless)
with gr.Tab("Parameters"):
with gr.Tab("Basic", elem_id="basic_tab"):
basic_training = BasicTraining(
learning_rate_value="1e-5",
lr_scheduler_value="cosine",
lr_warmup_value="10",
dreambooth=True,
sdxl_checkbox=source_model.sdxl_checkbox,
)
# # Add SDXL Parameters
# sdxl_params = SDXLParameters(source_model.sdxl_checkbox, show_sdxl_cache_text_encoder_outputs=False)
with gr.Tab("Advanced", elem_id="advanced_tab"):
advanced_training = AdvancedTraining(headless=headless)
advanced_training.color_aug.change(
color_aug_changed,
inputs=[advanced_training.color_aug],
outputs=[basic_training.cache_latents],
)
with gr.Tab("Samples", elem_id="samples_tab"):
sample = SampleImages()
with gr.Tab("Dataset Preparation"):
gr.Markdown(
"This section provide Dreambooth tools to help setup your dataset..."
)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input=folders.train_data_dir,
reg_data_dir_input=folders.reg_data_dir,
output_dir_input=folders.output_dir,
logging_dir_input=folders.logging_dir,
headless=headless,
)
gradio_dataset_balancing_tab(headless=headless)
with gr.Row():
button_run = gr.Button("Start training", variant="primary")
button_stop_training = gr.Button("Stop training")
button_print = gr.Button("Print training command")
# Setup gradio tensorboard buttons
(
button_start_tensorboard,
button_stop_tensorboard,
) = gradio_tensorboard()
button_start_tensorboard.click(
start_tensorboard,
inputs=[dummy_headless, folders.logging_dir],
show_progress=False,
)
button_stop_tensorboard.click(
stop_tensorboard,
show_progress=False,
)
settings_list = [
source_model.pretrained_model_name_or_path,
source_model.v2,
source_model.v_parameterization,
source_model.sdxl_checkbox,
folders.logging_dir,
folders.train_data_dir,
folders.reg_data_dir,
folders.output_dir,
basic_training.max_resolution,
basic_training.learning_rate,
basic_training.learning_rate_te,
basic_training.learning_rate_te1,
basic_training.learning_rate_te2,
basic_training.lr_scheduler,
basic_training.lr_warmup,
basic_training.train_batch_size,
basic_training.epoch,
basic_training.save_every_n_epochs,
basic_training.mixed_precision,
basic_training.save_precision,
basic_training.seed,
basic_training.num_cpu_threads_per_process,
basic_training.cache_latents,
basic_training.cache_latents_to_disk,
basic_training.caption_extension,
basic_training.enable_bucket,
advanced_training.gradient_checkpointing,
advanced_training.full_fp16,
advanced_training.full_bf16,
advanced_training.no_token_padding,
basic_training.stop_text_encoder_training,
basic_training.min_bucket_reso,
basic_training.max_bucket_reso,
advanced_training.xformers,
source_model.save_model_as,
advanced_training.shuffle_caption,
advanced_training.save_state,
advanced_training.resume,
advanced_training.prior_loss_weight,
advanced_training.color_aug,
advanced_training.flip_aug,
advanced_training.clip_skip,
advanced_training.vae,
folders.output_name,
advanced_training.max_token_length,
basic_training.max_train_epochs,
basic_training.max_train_steps,
advanced_training.max_data_loader_n_workers,
advanced_training.mem_eff_attn,
advanced_training.gradient_accumulation_steps,
source_model.model_list,
advanced_training.keep_tokens,
basic_training.lr_scheduler_num_cycles,
basic_training.lr_scheduler_power,
advanced_training.persistent_data_loader_workers,
advanced_training.bucket_no_upscale,
advanced_training.random_crop,
advanced_training.bucket_reso_steps,
advanced_training.v_pred_like_loss,
advanced_training.caption_dropout_every_n_epochs,
advanced_training.caption_dropout_rate,
basic_training.optimizer,
basic_training.optimizer_args,
basic_training.lr_scheduler_args,
advanced_training.noise_offset_type,
advanced_training.noise_offset,
advanced_training.adaptive_noise_scale,
advanced_training.multires_noise_iterations,
advanced_training.multires_noise_discount,
sample.sample_every_n_steps,
sample.sample_every_n_epochs,
sample.sample_sampler,
sample.sample_prompts,
advanced_training.additional_parameters,
advanced_training.vae_batch_size,
advanced_training.min_snr_gamma,
advanced_training.weighted_captions,
advanced_training.save_every_n_steps,
advanced_training.save_last_n_steps,
advanced_training.save_last_n_steps_state,
advanced_training.use_wandb,
advanced_training.wandb_api_key,
advanced_training.scale_v_pred_loss_like_noise_pred,
advanced_training.min_timestep,
advanced_training.max_timestep,
]
config.button_open_config.click(
open_configuration,
inputs=[dummy_db_true, config.config_file_name] + settings_list,
outputs=[config.config_file_name] + settings_list,
show_progress=False,
)
config.button_load_config.click(
open_configuration,
inputs=[dummy_db_false, config.config_file_name] + settings_list,
outputs=[config.config_file_name] + settings_list,
show_progress=False,
)
config.button_save_config.click(
save_configuration,
inputs=[dummy_db_false, config.config_file_name] + settings_list,
outputs=[config.config_file_name],
show_progress=False,
)
config.button_save_as_config.click(
save_configuration,
inputs=[dummy_db_true, config.config_file_name] + settings_list,
outputs=[config.config_file_name],
show_progress=False,
)
button_run.click(
train_model,
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
show_progress=False,
)
button_stop_training.click(executor.kill_command)
button_print.click(
train_model,
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
show_progress=False,
)
return (
folders.train_data_dir,
folders.reg_data_dir,
folders.output_dir,
folders.logging_dir,
)
def UI(**kwargs):
add_javascript(kwargs.get("language"))
css = ""
headless = kwargs.get("headless", False)
log.info(f"headless: {headless}")
if os.path.exists("./style.css"):
with open(os.path.join("./style.css"), "r", encoding="utf8") as file:
log.info("Load CSS...")
css += file.read() + "\n"
interface = gr.Blocks(css=css, title="Kohya_ss GUI", theme=gr.themes.Default())
with interface:
with gr.Tab("Dreambooth"):
(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
) = dreambooth_tab(headless=headless)
with gr.Tab("Utilities"):
utilities_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
enable_copy_info_button=True,
headless=headless,
)
# Show the interface
launch_kwargs = {}
username = kwargs.get("username")
password = kwargs.get("password")
server_port = kwargs.get("server_port", 0)
inbrowser = kwargs.get("inbrowser", False)
share = kwargs.get("share", False)
server_name = kwargs.get("listen")
launch_kwargs["server_name"] = server_name
if username and password:
launch_kwargs["auth"] = (username, password)
if server_port > 0:
launch_kwargs["server_port"] = server_port
if inbrowser:
launch_kwargs["inbrowser"] = inbrowser
if share:
launch_kwargs["share"] = share
interface.launch(**launch_kwargs)
if __name__ == "__main__":
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
"--listen",
type=str,
default="127.0.0.1",
help="IP to listen on for connections to Gradio",
)
parser.add_argument(
"--username", type=str, default="", help="Username for authentication"
)
parser.add_argument(
"--password", type=str, default="", help="Password for authentication"
)
parser.add_argument(
"--server_port",
type=int,
default=0,
help="Port to run the server listener on",
)
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
parser.add_argument("--share", action="store_true", help="Share the gradio UI")
parser.add_argument(
"--headless", action="store_true", help="Is the server headless"
)
parser.add_argument(
"--language", type=str, default=None, help="Set custom language"
)
args = parser.parse_args()
UI(
username=args.username,
password=args.password,
inbrowser=args.inbrowser,
server_port=args.server_port,
share=args.share,
listen=args.listen,
headless=args.headless,
language=args.language,
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。