代码拉取完成,页面将自动刷新
# 进行人脸录入 / face register
# 录入多张人脸 / support multi-faces
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2018-10-29
import os # 读写文件
import shutil # 读写文件
import cv2 # 图像处理的库 OpenCv
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# Dlib 68 点特征预测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# OpenCv 调用摄像头
cap = cv2.VideoCapture(0)
# 设置视频参数
cap.set(3, 480)
# 人脸截图的计数器
cnt_ss = 0
# 存储人脸的文件夹
current_face_dir = 0
# 保存的路径
path_make_dir = "data/data_faces_from_camera/"
path_csv = "data/data_csvs_from_camera/"
# 新建文件夹, 删除之前存的人脸数据文件夹
def pre_work():
# 新建文件夹
if os.path.isdir(path_make_dir):
pass
else:
os.mkdir(path_make_dir)
if os.path.isdir(path_csv):
pass
else:
os.mkdir(path_csv)
# 删除之前存的人脸数据文件夹
folders_rd = os.listdir(path_make_dir)
for i in range(len(folders_rd)):
shutil.rmtree(path_make_dir+folders_rd[i])
csv_rd = os.listdir(path_csv)
for i in range(len(csv_rd)):
os.remove(path_csv+csv_rd[i])
# 每次程序录入之前,删掉之前存的人脸数据
#pre_work()
# 人脸种类数目的计数器
person_cnt = 0
# The flag of if u can save images
save_flag = 1
while cap.isOpened():
# 480 height * 640 width
flag, img_rd = cap.read()
kk = cv2.waitKey(1)
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
# 人脸数 faces
faces = detector(img_gray, 0)
# 待会要写的字体
font = cv2.FONT_HERSHEY_COMPLEX
# 按下 'n' 新建存储人脸的文件夹
if kk == ord('n'):
person_cnt += 1
#current_face_dir = path_make_dir + "person_" + str(person_cnt)
current_face_dir = path_make_dir + "han"
print('\n')
for dirs in (os.listdir(path_make_dir)):
if current_face_dir == path_make_dir + dirs:
shutil.rmtree(current_face_dir)
print("删除旧的文件夹:", current_face_dir)
os.makedirs(current_face_dir)
print("新建的人脸文件夹: ", current_face_dir)
# 将人脸计数器清零
cnt_ss = 0
if len(faces) != 0:
# 检测到人脸
# 矩形框
for k, d in enumerate(faces):
# 计算矩形大小
# (x,y), (宽度width, 高度height)
pos_start = tuple([d.left(), d.top()])
pos_end = tuple([d.right(), d.bottom()])
# 计算矩形框大小
height = (d.bottom() - d.top())
width = (d.right() - d.left())
hh = int(height/2)
ww = int(width/2)
# 设置颜色 / The color of rectangle of faces detected
color_rectangle = (255, 255, 255)
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
color_rectangle = (0, 0, 255)
save_flag = 0
else:
color_rectangle = (255, 255, 255)
save_flag = 1
cv2.rectangle(img_rd,
tuple([d.left() - ww, d.top() - hh]),
tuple([d.right() + ww, d.bottom() + hh]),
color_rectangle, 2)
# 根据人脸大小生成空的图像
im_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
if save_flag:
# 按下 's' 保存摄像头中的人脸到本地
if kk == ord('s'):
cnt_ss += 1
for ii in range(height*2):
for jj in range(width*2):
im_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
cv2.imwrite(current_face_dir + "/img_face_" + str(cnt_ss) + ".jpg", im_blank)
print("写入本地:", str(current_face_dir) + "/img_face_" + str(cnt_ss) + ".jpg")
# 显示人脸数
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
# 添加说明
cv2.putText(img_rd, "Face Register", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "N: New face folder", (20, 350), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save face", (20, 400), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
# 按下 'q' 键退出
if kk == ord('q'):
break
# 窗口显示
# cv2.namedWindow("camera", 0) # 如果需要摄像头窗口大小可调
cv2.imshow("camera", img_rd)
# 释放摄像头
cap.release()
# 删除建立的窗口
cv2.destroyAllWindows()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。