加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
ResultMerge_multi_process.py 8.58 KB
一键复制 编辑 原始数据 按行查看 历史
dingjiansw101 提交于 2019-05-21 20:56 . further speed up the poly nms
"""
To use the code, users should to config detpath, annopath and imagesetfile
detpath is the path for 15 result files, for the format, you can refer to "http://captain.whu.edu.cn/DOTAweb/tasks.html"
search for PATH_TO_BE_CONFIGURED to config the paths
Note, the evaluation is on the large scale images
"""
import os
import numpy as np
import re
import time
import sys
sys.path.insert(0,'..')
try:
import dota_utils as util
except:
import dota_kit.dota_utils as util
import polyiou
import pdb
import math
from multiprocessing import Pool
from functools import partial
## the thresh for nms when merge image
nms_thresh = 0.1
def py_cpu_nms_poly(dets, thresh):
scores = dets[:, 8]
polys = []
areas = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
for j in range(order.size - 1):
iou = polyiou.iou_poly(polys[i], polys[order[j + 1]])
ovr.append(iou)
ovr = np.array(ovr)
# print('ovr: ', ovr)
# print('thresh: ', thresh)
try:
if math.isnan(ovr[0]):
pdb.set_trace()
except:
pass
inds = np.where(ovr <= thresh)[0]
# print('inds: ', inds)
order = order[inds + 1]
return keep
def py_cpu_nms_poly_fast(dets, thresh):
obbs = dets[:, 0:-1]
x1 = np.min(obbs[:, 0::2], axis=1)
y1 = np.min(obbs[:, 1::2], axis=1)
x2 = np.max(obbs[:, 0::2], axis=1)
y2 = np.max(obbs[:, 1::2], axis=1)
scores = dets[:, 8]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
polys = []
for i in range(len(dets)):
tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1],
dets[i][2], dets[i][3],
dets[i][4], dets[i][5],
dets[i][6], dets[i][7]])
polys.append(tm_polygon)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
ovr = []
i = order[0]
keep.append(i)
# if order.size == 0:
# break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
# w = np.maximum(0.0, xx2 - xx1 + 1)
# h = np.maximum(0.0, yy2 - yy1 + 1)
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
hbb_inter = w * h
hbb_ovr = hbb_inter / (areas[i] + areas[order[1:]] - hbb_inter)
# h_keep_inds = np.where(hbb_ovr == 0)[0]
h_inds = np.where(hbb_ovr > 0)[0]
tmp_order = order[h_inds + 1]
for j in range(tmp_order.size):
iou = polyiou.iou_poly(polys[i], polys[tmp_order[j]])
hbb_ovr[h_inds[j]] = iou
# ovr.append(iou)
# ovr_index.append(tmp_order[j])
# ovr = np.array(ovr)
# ovr_index = np.array(ovr_index)
# print('ovr: ', ovr)
# print('thresh: ', thresh)
try:
if math.isnan(ovr[0]):
pdb.set_trace()
except:
pass
inds = np.where(hbb_ovr <= thresh)[0]
# order_obb = ovr_index[inds]
# print('inds: ', inds)
# order_hbb = order[h_keep_inds + 1]
order = order[inds + 1]
# pdb.set_trace()
# order = np.concatenate((order_obb, order_hbb), axis=0).astype(np.int)
return keep
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
#print('dets:', dets)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
## index for dets
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def nmsbynamedict(nameboxdict, nms, thresh):
nameboxnmsdict = {x: [] for x in nameboxdict}
for imgname in nameboxdict:
#print('imgname:', imgname)
#keep = py_cpu_nms(np.array(nameboxdict[imgname]), thresh)
#print('type nameboxdict:', type(nameboxnmsdict))
#print('type imgname:', type(imgname))
#print('type nms:', type(nms))
keep = nms(np.array(nameboxdict[imgname]), thresh)
#print('keep:', keep)
outdets = []
#print('nameboxdict[imgname]: ', nameboxnmsdict[imgname])
for index in keep:
# print('index:', index)
outdets.append(nameboxdict[imgname][index])
nameboxnmsdict[imgname] = outdets
return nameboxnmsdict
def poly2origpoly(poly, x, y, rate):
origpoly = []
for i in range(int(len(poly)/2)):
tmp_x = float(poly[i * 2] + x) / float(rate)
tmp_y = float(poly[i * 2 + 1] + y) / float(rate)
origpoly.append(tmp_x)
origpoly.append(tmp_y)
return origpoly
def mergesingle(dstpath, nms, fullname):
name = util.custombasename(fullname)
#print('name:', name)
dstname = os.path.join(dstpath, name + '.txt')
with open(fullname, 'r') as f_in:
nameboxdict = {}
lines = f_in.readlines()
splitlines = [x.strip().split(' ') for x in lines]
for splitline in splitlines:
subname = splitline[0]
splitname = subname.split('__')
oriname = splitname[0]
pattern1 = re.compile(r'__\d+___\d+')
#print('subname:', subname)
x_y = re.findall(pattern1, subname)
x_y_2 = re.findall(r'\d+', x_y[0])
x, y = int(x_y_2[0]), int(x_y_2[1])
pattern2 = re.compile(r'__([\d+\.]+)__\d+___')
rate = re.findall(pattern2, subname)[0]
confidence = splitline[1]
poly = list(map(float, splitline[2:]))
origpoly = poly2origpoly(poly, x, y, rate)
det = origpoly
det.append(confidence)
det = list(map(float, det))
if (oriname not in nameboxdict):
nameboxdict[oriname] = []
nameboxdict[oriname].append(det)
nameboxnmsdict = nmsbynamedict(nameboxdict, nms, nms_thresh)
with open(dstname, 'w') as f_out:
for imgname in nameboxnmsdict:
for det in nameboxnmsdict[imgname]:
#print('det:', det)
confidence = det[-1]
bbox = det[0:-1]
outline = imgname + ' ' + str(confidence) + ' ' + ' '.join(map(str, bbox))
#print('outline:', outline)
f_out.write(outline + '\n')
def mergebase_parallel(srcpath, dstpath, nms):
pool = Pool(16)
filelist = util.GetFileFromThisRootDir(srcpath)
mergesingle_fn = partial(mergesingle, dstpath, nms)
# pdb.set_trace()
pool.map(mergesingle_fn, filelist)
def mergebase(srcpath, dstpath, nms):
filelist = util.GetFileFromThisRootDir(srcpath)
for filename in filelist:
mergesingle(dstpath, nms, filename)
def mergebyrec(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000'
# dstpath = r'E:\bod-dataset\results\bod-v3_rfcn_2000000_nms'
mergebase(srcpath,
dstpath,
py_cpu_nms)
def mergebypoly(srcpath, dstpath):
"""
srcpath: result files before merge and nms
dstpath: result files after merge and nms
"""
# srcpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/comp4_test_results'
# dstpath = r'/home/dingjian/evaluation_task1/result/faster-rcnn-59/testtime'
# mergebase(srcpath,
# dstpath,
# py_cpu_nms_poly)
mergebase_parallel(srcpath,
dstpath,
py_cpu_nms_poly_fast)
if __name__ == '__main__':
mergebypoly(r'path_to_configure', r'path_to_configure')
# mergebyrec()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化