代码拉取完成,页面将自动刷新
# 库函数导入
import requests
from lxml import etree
import csv
import time
import pandas as pd
from queue import Queue
from threading import Thread
# 网页爬取函数
# 下面加入了num_retries这个参数,经过测试网络正常一般最多retry一次就能获得结果
def getUrl(url,num_retries = 5):
headers = {'User-Agent':"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36"}
try:
response = requests.get(url,headers = headers)
response.encoding = 'GBK'
data = response.text
return data
except Exception as e:
if num_retries > 0:
time.sleep(10)
print(url)
print("requests fail, retry!")
return getUrl(url,num_retries-1) #递归调用
else:
print("retry fail!")
print("error: %s" % e + " " + url)
return #返回空值,程序运行报错
# 获取省级代码函数
def getProvince(url):
province = []
data = getUrl(url)
selector = etree.HTML(data)
provinceList = selector.xpath('//tr[@class="provincetr"]')
for i in provinceList:
provinceName = i.xpath('td/a/text()') #这里如果采用//a/text()路径会出现问题!!
provinceLink = i.xpath('td/a/@href')
for j in range(len(provinceLink)):
provinceURL = url[:-10] + provinceLink[j] #根据获取到的每个省的链接进行补全,得到真实的URL。
province.append({'name':provinceName[j],'link':provinceURL})
return province
# 获取市级代码函数
def getCity(url_list):
city_all = []
for url in url_list:
data = getUrl(url)
selector = etree.HTML(data)
cityList = selector.xpath('//tr[@class="citytr"]')
#下面是抓取每一个城市的代码、URL
city = []
for i in cityList:
cityCode = i.xpath('td[1]/a/text()')
cityLink = i.xpath('td[1]/a/@href')
cityName = i.xpath('td[2]/a/text()')
for j in range(len(cityLink)):
cityURL = url[:-7] + cityLink[j]
city.append({'name':cityName[j],'code':cityCode[j],'link':cityURL})
city_all.extend(city) #所有省的城市信息合并在一起
return city_all
# 获取区级代码函数---多线程实现
def getCounty(url_list):
queue_county = Queue() #队列
thread_num = 10 #进程数
county = [] #记录区级信息的字典(全局)
def produce_url(url_list):
for url in url_list:
queue_county.put(url) # 生成URL存入队列,等待其他线程提取
def getData():
while not queue_county.empty(): # 保证url遍历结束后能退出线程
url = queue_county.get() # 从队列中获取URL
data = getUrl(url)
selector = etree.HTML(data)
countyList = selector.xpath('//tr[@class="countytr"]')
#下面是爬取每个区的代码、URL
for i in countyList:
countyCode = i.xpath('td[1]/a/text()')
countyLink = i.xpath('td[1]/a/@href')
countyName = i.xpath('td[2]/a/text()')
#上面得到的是列表形式的,下面将其每一个用字典存储
for j in range(len(countyLink)):
countyURL = url[:-9] + countyLink[j]
county.append({'code':countyCode[j],'link':countyURL,'name':countyName[j]})
def run(url_list):
produce_url(url_list)
ths = []
for _ in range(thread_num):
th = Thread(target = getData)
th.start()
ths.append(th)
for th in ths:
th.join()
run(url_list)
return county
# 获取街道代码函数---多线程实现
def getTown(url_list):
queue_town = Queue() #队列
thread_num = 50 #进程数
town = [] #记录街道信息的字典(全局)
def produce_url(url_list):
for url in url_list:
queue_town.put(url) # 生成URL存入队列,等待其他线程提取
def getData():
while not queue_town.empty(): # 保证url遍历结束后能退出线程
url = queue_town.get() # 从队列中获取URL
data = getUrl(url)
selector = etree.HTML(data)
townList = selector.xpath('//tr[@class="towntr"]')
#下面是爬取每个区的代码、URL
for i in townList:
townCode = i.xpath('td[1]/a/text()')
townLink = i.xpath('td[1]/a/@href')
townName = i.xpath('td[2]/a/text()')
#上面得到的是列表形式的,下面将其每一个用字典存储
for j in range(len(townLink)):
# 中山市、东莞市的处理
if url == 'http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/44/4419.html' or url == 'http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/44/4420.html':
townURL = url[:-9] + townLink[j]
else:
townURL = url[:-11] + townLink[j]
town.append({'code':townCode[j],'link':townURL,'name':townName[j]})
def run(url_list):
produce_url(url_list)
ths = []
for _ in range(thread_num):
th = Thread(target = getData)
th.start()
ths.append(th)
for th in ths:
th.join()
run(url_list)
return town
# 获取居委会代码函数---多线程实现
def getVillage(url_list):
queue_village = Queue() #队列
thread_num = 200 #进程数
village = [] #记录街道信息的字典(全局)
def produce_url(url_list):
for url in url_list:
queue_village.put(url) # 生成URL存入队列,等待其他线程提取
def getData():
while not queue_village.empty(): # 保证url遍历结束后能退出线程
url = queue_village.get() # 从队列中获取URL
data = getUrl(url)
selector = etree.HTML(data)
villageList = selector.xpath('//tr[@class="villagetr"]')
#下面是爬取每个区的代码、URL
for i in villageList:
villageCode = i.xpath('td[1]/text()')
UrbanRuralCode = i.xpath('td[2]/text()')
villageName = i.xpath('td[3]/text()')
#上面得到的是列表形式的,下面将其每一个用字典存储
for j in range(len(villageCode)):
village.append({'code':villageCode[j],'UrbanRuralCode':UrbanRuralCode[j],'name':villageName[j]})
def run(url_list):
produce_url(url_list)
ths = []
for _ in range(thread_num):
th = Thread(target = getData)
th.start()
ths.append(th)
for th in ths:
th.join()
run(url_list)
return village
###########################
###########################
#省级信息获取
pro = getProvince("http://www.stats.gov.cn/tjsj/tjbz/tjyqhdmhcxhfdm/2016/index.html")
df_province = pd.DataFrame(pro)
df_province.info()
# 信息写入csv文件
df_province.to_csv('province.csv', sep=',', header=True, index=False)
###########################
#市级信息获取
city = getCity(df_province['link'])
df_city = pd.DataFrame(city)
df_city.info()
# 信息写入csv文件
df_city.to_csv('city.csv', sep=',', header=True, index=False)
###########################
#区级信息获取
county = getCounty(df_city['link'])
df_county = pd.DataFrame(county)
# 排序:由于多线程的关系,数据的顺序已经被打乱,所以这里按照区代码进行“升序”排序。
df_county_sorted = df_county.sort_values(by = ['code']) #按1列进行升序排序
df_county_sorted.info()
# 信息写入csv文件
df_county_sorted.to_csv('county.csv', sep=',', header=True, index=False)
###########################
#街道信息获取
#中山市、东莞市的特殊处理(他们的链接在df_city中)
url_list = list()
for url in df_county['link']:
url_list.append(url)
town_link_list = df_city[df_city['name'].isin(['中山市','东莞市'])]['link'].values
for town_link in town_link_list:
url_list.append(town_link)
town = getTown(url_list)
df_town = pd.DataFrame(town)
# 排序:由于多线程的关系,数据的顺序已经被打乱,所以这里按照街道代码进行“升序”排序。
df_town_sorted = df_town.sort_values(by = ['code']) #按1列进行升序排序
df_town_sorted.info()
# 信息写入csv文件
df_town_sorted.to_csv('town.csv', sep=',', header=True, index=False)
###########################
#居委会信息获取
village = getVillage(df_town['link'])
df_village = pd.DataFrame(village)
# 排序:由于多线程的关系,数据的顺序已经被打乱,所以这里按照街道代码进行“升序”排序。
df_village_sorted = df_village.sort_values(by = ['code']) #按1列进行升序排序
df_village_sorted.info()
# 信息写入csv文件
df_village_sorted.to_csv('village.csv', sep=',', header=True, index=False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。