qstock由“Python金融量化”公众号开发,试图打造成个人量化投研分析开源库,目前包括数据获取(data)、可视化(plot)、选股(stock)和量化回测(backtest)四个模块。其中数据模块(data)数据来源于东方财富网、同花顺、新浪财经等网上公开数据。qstock致力于为用户提供更加简洁和规整化的金融市场数据接口,其中可视化模块为用户提供基于web的交互图形简单操作接口;选股模块提供了同花顺的技术选股和公众号策略选股,包括RPS、MM趋势、财务指标、资金流模型等,回测模块为大家提供向量化(基于pandas)和基于事件驱动的基本框架和模型。
读者直接在cmd或anaconda prompt上输入“pip install qstock ”进行安装,或输入“pip install -upgrade qstock”进行更新。
qstock是免费开源金融量化库,已在pypi官网和GitHub上发布,更新至1.3.5版本,添加了问财的数据访问功能,通过qstock.wencai('选股条件')调用。使用“pip install qstock ”进行安装,通过’pip install –upgrade qstock’进行更新。目前部分策略选股和策略回测功能仅供知识星球会员使用,会员可在知识星球置顶帖子上获取 qstock 的离线安装包。
PyPI:https://pypi.org/project/qstock/1.3.5/
关于 qstock 更详细的使用方法,请参考微信公众号Python金融量化 qstock 专题系列文章:
【qstock开源了】数据篇之行情交易数据 【qstock数据篇】行业概念板块与资金流 【qstock量化】数据篇之股票基本面数据 【qstock量化】数据篇之宏观指标和财经新闻文本 【qstock量化】动态交互数据可视化 【qstock量化】技术形态与概念热点选股池 【手把手教你】使用qstock实现量化策略选股 【手把手教你】使用qstock进行量化回测 基于qstock的量化复盘与自动盯盘
下面为大家介绍qstock各模块的具体调用方式和应用举例。
#导入qstock模块
import qstock as qs
获取指定市场所有标的或单个或多个证券最新行情指标 realtime_data(market='沪深A', code=None):
#获取沪深A股最新行情指标
df=qs.realtime_data()
#查看前几行
df.head()
#获取期货最新行情指标
df=qs.realtime_data('期货')
#查看前几行
df.head()
#获取概念板块最新行情指标
df=qs.realtime_data('概念板块')
#查看前几行
df.head()
#获取ETF最新行情指标
df=qs.realtime_data('ETF')
#查看前几行
df.head()
qs.realtime_data(code=['中国平安','300684','锂电池ETF','BK0679','上证指数'])
intraday_data(code)
#股票日内交易数据
df=qs.intraday_data('中国平安')
df.head()
#基金日内交易数据
df=qs.intraday_data('有色50ETF')
df.head()
stock_snapshot(code):
qs.stock_snapshot('中国平安')
获取交易日实时盘口异动数据,相当于盯盘小精灵。 realtime_change(flag=None):
df=qs.realtime_change('60日新高')
#查看前几行
df.head()
#异动类型:火箭发射
df=qs.realtime_change(1)
#查看前几行
df.head()
获取单只或多只证券(股票、基金、债券、期货)的历史K线数据。可以根据realtime_data实时行情接口获取相应金融市场交易标的的代码或简称,用于获取其历史K线数据。
获取股票、指数、债券、期货、基金等历史K线行情。参数说明:
#默认日频率、前复权所有历史数据
#open:开盘价,high:最高价,low:最低价,close:收盘价
#vol:成交量,turnover:成交金额,turnover_rate:换手率
#在notebook上输入"qs.get_data?"可查看数据接口的相应参数
df=qs.get_data('601318')
df.tail()
#个股code_list可以输入代码或简称或多个股票的list
#获取中国平安2022年9月28日至今的5分钟数据,默认前复权
df=qs.get_data('中国平安',start='20220928',freq=5)
df.tail()
#获取苹果公司股票数据
df=qs.get_data('AAPL')
df.tail()
df=qs.get_data('棕榈油2210')
df.tail()
注意上证指数代码'000001'与平安银行股票代码相同, 为避免代码相同引起的混乱,获取指数数据,要输入指数的中文简称或拼音缩写。 如'sh'代表'上证指数','sz'代表'深证综指','cyb'代表‘创业板指','zxb'代表'中小100'(原来的中小板指数),'hs300'代表'沪深300','sz50'代表 '上证50','zz500'代表'中证500'等等
code_list=['sh','sz','cyb','zxb','hs300','sz50','zz500']
df=qs.get_data(code_list)
df
#全球指数可参见:https://quote.eastmoney.com/center/qqzs.html
global_indexs=['道琼斯','标普500','纳斯达克','恒生指数','英国富时','法国CAC40','德国DAX',
'日经225','韩国KOSPI','澳大利亚标普200','印度孟买SENSEX','俄罗斯RTS','加拿大S&P',
'台湾加权','美元指数','路透CRB商品指数']
qs.get_data(global_indexs)
获取单只或多只证券(股票、基金、债券、期货)的收盘价格dataframe
code_list输入股票list列表 如code_list=['中国平安','贵州茅台','工业富联']
code_list=['中国平安','300684','锂电池ETF','BK0679','上证指数']
df=qs.get_price(code_list)
df.tail()
起始和结束日期默认为None,表示最新,日期格式'2021-08-21'
df=qs.stock_billboard('20220901','20221011')
df
4it [00:01, 3.98it/s]
获取沪深市场指定股票前十大股东信息
df=qs.stock_holder_top10('中国平安', n=2)
#df
df=qs.stock_holder_num('20220930')
#df
#大股东
df=qs.stock_holder_change()
df.head()
获取新浪财经机构持股一览表
#2022年2季度
df=qs.institute_hold('20222')
#df
获取公司主营业务构成
df=qs.main_business('丰元股份')
#df.head()
df=qs.financial_statement('业绩报表',date='20220930')
#df.head()
df=qs.financial_statement('yjyg')
#df.head()
#注意参数设置有个小bug,目前调用会报错,将在新版本中修正!
df=qs.financial_statement('yjkb')
#df.head()
df=qs.financial_statement('资产负债表')
#查看前几行
#df.head()
df=qs.financial_statement('利润表')
#查看前几行
#df.head()
df=qs.financial_statement('现金流量表')
#查看前几行
#df.head()
code_list:代码或简称,可以输入单只或多只个股的list
如:单只个股:code_list='中国平安';
多只个股code_list=['晓程科技','中国平安','西部建设']
返回:代码、名称、净利润、总市值、流通市值、所处行业、市盈率、市净率、ROE、毛利率和净利率指标
code_list=['300139','中国平安','西部建设','贵州茅台','丰元股份','002432']
df=qs.stock_basics(code_list)
#df
获取个股历史报告期所有财务分析指标
code: 股票代码或简称
df=qs.stock_indicator('中国平安')
#df.head()
df=qs.eps_forecast()
#df.head()
获取常见指数的成分股
#上证50成份股
df=qs.index_member('sz50')
#查看前几行数据
#df.head()
#沪深300成分股
#qs.index_member('hs300')
获取同花顺概念板块名称、成分股、和行情数据
ths_index_name(flag='概念')
flag='概念板块' or '行业板块'
#行业板块名称
name_list=qs.ths_index_name('行业')
#查看5个
name_list[:5]
['种植业与林业', '养殖业', '农产品加工', '农业服务', '煤炭开采加工']
#概念板块名称
name_list=qs.ths_index_name('概念')
#查看5个
name_list[:5]
['信创', '有机硅概念', '空气能热泵', '先进封装(Chiplet)', '减速器']
获取同花顺概念板块成分股 注意,同花顺数据接口不太稳定,如报错过一段时间再试。
code:输入板块行业或概念代码或简称
#比如种植业与林业成分股
df=qs.ths_index_member('种植业与林业')
#查看前几行
#df.head()
#比如有机硅概念
df=qs.ths_index_member('有机硅概念')
#查看前几行
#df.head()
获取同花顺概念或行业板块指数行情数据(开盘、最高、最低、收盘和成交量)
code:输入板块行业或概念代码或简称
df=qs.ths_index_data('有机硅概念')
#df.head()
code : 股票、债券代码
获取单只股票最新交易日的日内分钟级单子流入流出数据
#注意要在交易日交易时段才能获取到相应数据
df=qs.intraday_money('中国平安')
#df.head()
code : 股票、债券代码
获取股票、债券、期货等的历史单子流入流出数据
df=qs.hist_money('中国平安')
#df.tail()
stock可以为股票简称或代码,如晓程科技或300139 ndays为时间周期或list,如3日、5日、10日等
#默认ndays=[3, 5, 10, 20]
df=qs.stock_money('中国平安')
#df
df=qs.stock_money('中国平安',[10,30,60])
#df.tail()
获取同花顺个股、行业、概念资金流数据
#个股20日资金流数据
df=qs.ths_money('个股',n=20)
#df.tail()
#行业板块10日资金流数据
df=qs.ths_money('行业',n=10)
#df.tail()
#概念板块5日资金流数据
df=qs.ths_money('概念',n=5)
#df.tail()
north_money(flag=None,n=1)
flag=None,默认返回北上资金总体每日净流入数据
flag='行业',代表北向资金增持行业板块排行
flag='概念',代表北向资金增持概念板块排行
flag='个股',代表北向资金增持个股情况
n: 代表n日排名,n可选1、3、5、10、‘M’,‘Q','Y' 即 {'1':"今日", '3':"3日",'5':"5日", '10':"10日",'M':"月", 'Q':"季", 'Y':"年"}
#北向资金每日净流入数据
df=qs.north_money()
#df.tail()
#北向资金增持行业板块5日排名
df=qs.north_money('行业',5)
#df.tail()
#北向资金增持概念板块
df=qs.north_money('概念',5)
#df.tail()
#北向资金增持个股情况
#有个小bug,列名没有对应起来,该函数调用将报错,将在新版本中修正。
df=qs.north_money('个股',5)
#df.tail()
获取宏观经济常见指标
flag:lpr:贷款基准利率;ms:货币供应量;cpi:消费者物价指数; ppi:工业品出厂价格指数;pmi:采购经理人指数 默认返回gdp数据
对应数据也可以使用相应接口,如qs.cpi()、qs.gdp()、qs.ms()、qs.ppi()、qs.pmi()、qs.lpr()可以分别获取CPI、GDP、货币供应量、PPI、PMI数据。
df=qs.macro_data('gdp')
#df
df=qs.macro_data('cpi')
#df
df=qs.macro_data('ppi')
#df
df=qs.macro_data('pmi')
#df
df=qs.macro_data('ms')
#df
df=qs.macro_data('lpr')
#df
同业拆借利率
#默认输出上海银行同业拆借市场利率
#或输入market='sh'
df=qs.ib_rate()
df
df=qs.ib_rate(market='ch')
df
#伦敦简称l,注意是英文字母‘l’(London的首字母小写),不是数字1!
#币种可选GBP'英镑',USD'美元',EUR'欧元',JPY'日元'
df=qs.ib_rate(market='l',fc='GBP')
df
#伦敦美元
df=qs.ib_rate('l','USD')
df
#伦敦欧元
df=qs.ib_rate('l','EUR')
df
#伦敦日元
df=qs.ib_rate('l','JPY')
#df
#欧元
df=qs.ib_rate('eu')
df
#香港市场美元
df=qs.ib_rate('hk','USD')
df
#香港市场港币
df=qs.ib_rate('hk','HKD')
df
#香港市场人民币
df=qs.ib_rate('hk','CNY')
df
#新加坡美元利率
df=qs.ib_rate('s','usd')
df
#新加坡星元利率
df=qs.ib_rate('s','SGD')
df
新闻资讯数据
news_data(news_type=None,start=None,end=None,code=None):
news_type:新闻类型:cctv'或'新闻联播'; 'js'或'金十数据';'stock' 或'个股新闻' 不输入参数,默认输出财联社电报新闻数据。
start:起始日期,如'20220930',不输入默认当前最新日期
end:结束日期,如'20221001',不输入默认当前最新日期
stock:个股代码,个股新闻时需输入该参数
#默认参数输出财联社电报新闻数据
df=qs.news_data()
df.tail()
df=qs.news_data('js')
df.tail()
#参数start起始日期,end结束日期,使用默认参数输出最新日期新闻联播
df=qs.news_data('cctv',start='20221016',end='20221016')
#df.head()
#也可以使用新闻联播数据接口获取,start和end默认为最新日期
df=qs.news_cctv(start='20221016',end='20221016')
df.head()
#使用新闻统一接口
df=qs.news_data('个股',code='天瑞仪器')
df.head()
#使用个股新闻接口
df=qs.stock_news('天瑞仪器')
df.head()
import qstock as qs
from qstock import plot
参数说明:
#如果notebook不显示pyecharts的图形,在前面加上以下代码(去掉前面注释)
from pyecharts.globals import CurrentConfig, NotebookType
CurrentConfig.NOTEBOOK_TYPE = NotebookType.JUPYTER_NOTEBOOK
#获取中国平安2022年至今前复权的数据
df=qs.get_data('中国平安',start='2022-06-01',end='2022-10-20')
df.tail()
100%|██████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1000.31it/s]
#使用默认参数
plot.kline(df)
参数df与前面普通k线图线图。
也叫平均K线图(Heikin-Ashi),具体原理可以参考公众号推文《【手把手教你】使用Python对股价的Heikin Ashi蜡烛图进行可视化》。
普通K线图中往往存在很多噪声,这些噪声容易掩盖市场真实趋势的随机波动,包括价格和成交量波动。比如,对市场影响持续性较短的新闻事件,以及对技术指标和市场趋势解读等,都可能造成无意义的短期价格和交易量波动,这样的噪声会对交易者分析市场产生干扰和误导。为了减少普通K线图产生的噪声,HA蜡烛图应运而生,HA中的四个价格中,HA开盘价和HA收盘价都是经过平均计算得来,平均化的处理相当于噪声消除处理,在一定程度上消除了市场的噪声,可以更加明确地反映市场价格的走势。
plot.HA_kline(df)
参数说明:
#获取东方财富行业板块实时涨跌幅数据
data=qs.realtime_data('行业板块')[['名称','涨幅']]
data['权重']=abs(data['涨幅'])
#注意去掉涨幅为0的值,否则会报错
data=data[data['涨幅']!=0]
params={'data':data,'label':['名称'],'weight':'权重','value':'涨幅'}
plot.treemap(**params)
#获取东方财富概念板块实时涨跌幅数据
data=qs.realtime_data('概念')[['名称','涨幅']]
data['权重']=abs(data['涨幅'])
data=data[data['涨幅']!=0]
params={'data':data,'label':['名称'],'weight':'权重','value':'涨幅'}
plot.treemap(**params)
参数说明:
Ichimoku,是一名日本报纸作家提出的,用于衡量动量以及未来价格支撑和阻力区域的技术分析指标,目前被广泛用于判断外汇、期货、股票、黄金等投资品种的趋势和动量。关于ichimoku云图的基本原理详细以参考公众号推文:《【手把手教你】Ichimoku云图指标可视化与交易策略回测》
df=qs.get_data('丰元股份',start='2021-03-01')
plot.plot_ichimoku(df)
参数:data为series或dataframe的时候,可以不输入x和y。x为x坐标轴对应数据,y为y轴坐标对应数据。
#获取中国平安前复权价格数据
code='中国平安'
df=qs.get_data(code)
plot.line(df.close,title=code+'价格走势')
参数与前面画图函数相同
plot.stock_line(df.close)
df['ma20']=df.close.rolling(20).mean()
title='中国平安股价与20日均线'
plot.line(df[['close','ma20']],title=title)
#个股资金流
plot.line(qs.stock_money('中国平安'),title='中国平安资金流')
全球指数累计涨幅可视化
#常见的全球指数名称
global_indexs=['sh','cyb','恒生指数','道琼斯','标普500','纳斯达克','英国富时100','法国CAC40','德国DAX30','日经225','韩国KOSPI',
'澳大利亚标普200','印度孟买SENSEX','台湾加权','俄罗斯RTS','加拿大S&P/TSX','巴西BOVESPA']
index_data=qs.get_price(global_indexs,start='2012-01-01').dropna()
plot.line(index_data/index_data.iloc[0],title='全球指数累计涨幅(2012-2022)')
参数说明: 'orientation='h'表示横向柱状图,log_x和log_y为True表示使用对数坐标, barmode='group'表示对比条形图,默认。为'relative', 如qs.bar(dd['总市值'],log_x=True,orientation='h')。
#计算收益率
data=index_data.copy().dropna()
rets=data/data.shift(1)-1
rets=rets.to_period('Y')
rets=(rets.groupby(rets.index).apply(lambda x: ((1+x).cumprod()-1).iloc[-1])*100).round(2)
rets=rets.iloc[-1].sort_values(ascending=False)
title='全球指数2022年涨跌幅'
plot.bar(rets,title=title)
基于pyecharts画柱状图
x,y均为list,或者x为dataframe
plot.chart_bar(rets,title=title,zoom=True)
纵向柱状图
x,y均为list,或者x为dataframe
plot.chart_inv_bar(rets,title=title,zoom=True)
参数说明: color根据不同类型显示不同颜色; size根据值大小显示散点图的大小; trend='ols'添加回归拟合线; marginal_x='violin',添加小提琴图; marginal_y= 'box',添加箱线图。
data=qs.get_data('晓程科技')
plot.scatter(data,x='close',y='volume')
data=qs.get_data('晓程科技')
#计算收益率
data['ret']=data.close/data.close.shift(1)-1
data['weight']=data['ret'].abs()
#对换手率分类
data.loc[data.turnover_rate>20,'rr']='crazy'
data.loc[(10<data.turnover_rate)&(data.turnover_rate<20),'rr']='high'
data.loc[(5<data.turnover_rate)&(data.turnover_rate<10),'rr']='mid'
data.loc[data.turnover_rate<5,'rr']='low'
data.dropna(inplace=True)
#plot.scatter(data,x='turnover_rate',y='close',size='weight',trend='ols',marginal_x='histogram',marginal_y='box')
data为dataframe数据,value; hole数值0-1,显示中间空心; legend=True显示图例,默认不显示。
实例:个股主营业务占比可视化
code='晓程科技'
df=qs.main_business(code)
c1=df['报告期']=='2022中期'
c2=df['分类方向']=='按产品分'
df=df[c1&c2]
df
#plot.pie(df.iloc[:-1],x='分类',y='营业收入(万)',title=code+'主营业务收入')
基于pyecharts画饼图
参数与前面相同
plot.chart_pie(data=df.iloc[:-1],x='分类',y='营业收入(万)',title=code+'主营业务收入')
histnorm={1:'percent',2:'probability',3:'density',4:'probability density'},其他参数与前面相同。
#1:'percent',2:'probability',3:'density',4:'probability density'
code='晓程科技'
data=qs.get_data(code,fqt=2)
plot.hist(data,x='close',histnorm=3,title=code+'股价直方图')
直方图默认统计的是观测数,可以进行统计变化,设置stat参数。 stat可选参数:count:观测数(默认); frequency:频数;density:密度;probability:概率; kde=True表示添加核密度曲线。
其他参数与前面相同
stat可选参数:count:观测数(默认);frequency:频数;density:密度;probability:概率
plot.hist_kde(data.close,stat='probability')
参数与前面相类似。
index_list=['上证指数','创业板指','沪深300','道琼斯','标普500','纳斯达克']
data=qs.get_price(index_list)
plot.box(data.dropna())
#获取面板数据
dd=qs.get_data(index_list)
plot.box(dd,x='name',y='close',color='name')
plot.box(dd,y='name',x='close',color='name',orientation='h')
plot.violin(dd,x='name',y='close',color='name',box=True)
小提琴是是箱线图和核密度图的集合,通过箱线思维展示数据的各个百分位点。小提琴图上的核密度图展示了数据分布的形状,分布越宽的位置表示数据越集中于该处,反之则说明该处数据分布越少。
plot.violin(dd,y='name',x='close',color='name',box=True,orientation='h')
plot.violin(dd.query('name=="上证指数"'),y='name',x='close',box=True,orientation='h')
plot.violin(dd.query('name=="道琼斯"'),y='name',x='close',box=True,orientation='h')
sh0=qs.get_data('上证指数').close['2011':'2021']
sh=(sh0/sh0.shift(1)-1).to_period('M')
sh=sh.groupby(sh.index).apply(lambda x: ((((1+x).cumprod()-1).iloc[-1])*100).round(2))
x=[str(i) for i in range(2011,2022)]
y=[str(i)+'月' for i in range(1,13)]
v= [[i,j,sh[str(2011+i)+'-'+str(1+j)]] for i in range(11) for j in range(12)]
plot.chart_heatmap(x,y,v,title='上证指数月度收益率')
plot.chart_heatmap_color(x,y,v,title='上证综指月度收益率')
df=qs.realtime_data('地域')
df['名称']=df['名称'].apply(lambda s:s[:-2] if s.endswith('板块') else s)
df.head()
#地域板块最新价格指数
plot.chart_map(df,x='名称',y='最新')
txt=qs.news_data('cctv',start='20221020',end='20221021')
#缺失值处理,转为str格式
txt_list=''.join(list(txt.content.apply(lambda s:str(s))))
#使用jieba处理分词并转为词云格式数据
c_data=plot.cloud_data(txt_list)
#画词云图
plot.chart_wordcloud(c_data)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。