加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
debug.py 2.40 KB
一键复制 编辑 原始数据 按行查看 历史
xiaohang 提交于 2017-05-30 13:31 . add debug.py
from __future__ import print_function
import torch.optim as optim
import os
import torch
import numpy as np
from darknet import Darknet
from PIL import Image
from utils import image2torch, convert2cpu
from torch.autograd import Variable
cfgfile = 'face4.1re_95.91.cfg'
weightfile = 'face4.1re_95.91.conv.15'
imgpath = 'data/train/images/10002.png'
labpath = imgpath.replace('images', 'labels').replace('JPEGImages', 'labels').replace('.jpg', '.txt').replace('.png','.txt')
label = torch.zeros(50*5)
if os.path.getsize(labpath):
tmp = torch.from_numpy(np.loadtxt(labpath))
#tmp = torch.from_numpy(read_truths_args(labpath, 8.0/img.width))
#tmp = torch.from_numpy(read_truths(labpath))
tmp = tmp.view(-1)
tsz = tmp.numel()
#print('labpath = %s , tsz = %d' % (labpath, tsz))
if tsz > 50*5:
label = tmp[0:50*5]
elif tsz > 0:
label[0:tsz] = tmp
label = label.view(1, 50*5)
m = Darknet(cfgfile)
region_loss = m.loss
m.load_weights(weightfile)
print('--- bn weight ---')
print(m.models[0][1].weight)
print('--- bn bias ---')
print(m.models[0][1].bias)
print('--- bn running_mean ---')
print(m.models[0][1].running_mean)
print('--- bn running_var ---')
print(m.models[0][1].running_var)
m.train()
m = m.cuda()
optimizer = optim.SGD(m.parameters(), lr=1e-2, momentum=0.9, weight_decay=0.1)
img = Image.open(imgpath)
img = image2torch(img)
img = Variable(img.cuda())
target = Variable(label)
print('----- img ---------------------')
print(img.data.storage()[0:100])
print('----- target -----------------')
print(target.data.storage()[0:100])
optimizer.zero_grad()
output = m(img)
print('----- output ------------------')
print(output.data.storage()[0:100])
exit()
loss = region_loss(output, target)
print('----- loss --------------------')
print(loss)
save_grad = None
def extract(grad):
global saved_grad
saved_grad = convert2cpu(grad.data)
output.register_hook(extract)
loss.backward()
saved_grad = saved_grad.view(-1)
for i in xrange(saved_grad.size(0)):
if abs(saved_grad[i]) >= 0.001:
print('%d : %f' % (i, saved_grad[i]))
print(m.state_dict().keys())
#print(m.models[0][0].weight.grad.data.storage()[0:100])
#print(m.models[14][0].weight.data.storage()[0:100])
weight = m.models[13][0].weight.data
grad = m.models[13][0].weight.grad.data
mask = torch.abs(grad) >= 0.1
print(weight[mask])
print(grad[mask])
optimizer.step()
weight2 = m.models[13][0].weight.data
print(weight2[mask])
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化