代码拉取完成,页面将自动刷新
#-*- coding:utf-8 -*-
#!/usr/bin/env python
# export PYTHONPATH=/home/wanyouwen/ewenwan/software/caffe_yolo/caffe/python
# sudo python2 examples/ristretto/resNet/caffe_no_batchnorm.py /data4/quantization/models/ResNet/ResNet-152-train-val.prototxt |
# /data4/quantization/models/ResNet/ResNet-152-model.caffemodel --output_model ResNet-152-train-val-remove-bn.prototxt --output_weight ResNet-152-model-remove-bn.caffemodel
#import _init_paths
import numpy as np
import sys
import os
# caffe python 接口
sys.path.insert(0,"/home/wanyouwen/ewenwan/software/caffe_yolo/caffe/python")
import os.path as osp
import google.protobuf as pb
from argparse import ArgumentParser
import sys
import caffe
# 载入原始模型
def load_and_fill_biases(src_model, src_weights, dst_model, dst_weights):
with open(src_model) as f:
model = caffe.proto.caffe_pb2.NetParameter()
pb.text_format.Merge(f.read(), model)
for i, layer in enumerate(model.layer):
# 卷积层 后面会有 BN层
if layer.type == 'Convolution': # or layer.type == 'Scale':
# Add bias layer if needed
if layer.convolution_param.bias_term == False:
layer.convolution_param.bias_term = True
layer.convolution_param.bias_filler.type = 'constant'
layer.convolution_param.bias_filler.value = 0.0
with open(dst_model, 'w') as f:
f.write(pb.text_format.MessageToString(model))
caffe.set_mode_gpu()
net_src = caffe.Net(src_model, src_weights, caffe.TEST)
net_dst = caffe.Net(dst_model, caffe.TEST)
for key in net_src.params.keys():
for i in range(len(net_src.params[key])):
net_dst.params[key][i].data[:] = net_src.params[key][i].data[:]
if dst_weights is not None:
# Store params
pass
return net_dst
def merge_conv_and_bn(net, i_conv, i_bn, i_scale):
# This is based on Kyeheyon's work
assert(i_conv != None)
assert(i_bn != None)
def copy_double(data):
return np.array(data, copy=True, dtype=np.double)
key_conv = net._layer_names[i_conv]
key_bn = net._layer_names[i_bn]
key_scale = net._layer_names[i_scale] if i_scale else None
# Copy
bn_mean = copy_double(net.params[key_bn][0].data)
bn_variance = copy_double(net.params[key_bn][1].data)
num_bn_samples = copy_double(net.params[key_bn][2].data)
# and Invalidate the BN layer
net.params[key_bn][0].data[:] = 0
net.params[key_bn][1].data[:] = 1
net.params[key_bn][2].data[:] = 1
if num_bn_samples[0] == 0:
num_bn_samples[0] = 1
if net.params.has_key(key_scale):
print 'Combine {:s} + {:s} + {:s}'.format(key_conv, key_bn, key_scale)
scale_weight = copy_double(net.params[key_scale][0].data)
scale_bias = copy_double(net.params[key_scale][1].data)
net.params[key_scale][0].data[:] = 1
net.params[key_scale][1].data[:] = 0
else:
print 'Combine {:s} + {:s}'.format(key_conv, key_bn)
scale_weight = 1
scale_bias = 0
weight = copy_double(net.params[key_conv][0].data)
bias = copy_double(net.params[key_conv][1].data)
alpha = scale_weight / np.sqrt(bn_variance / num_bn_samples[0] + np.finfo(np.double).eps)
net.params[key_conv][1].data[:] = bias * alpha + (scale_bias - (bn_mean / num_bn_samples[0]) * alpha)
for i in range(len(alpha)):
net.params[key_conv][0].data[i] = weight[i] * alpha[i]
def merge_batchnorms_in_net(net):
# for each BN
for i, layer in enumerate(net.layers):
if layer.type != 'BatchNorm':
continue
l_name = net._layer_names[i]
l_bottom = net.bottom_names[l_name]
assert(len(l_bottom) == 1)
l_bottom = l_bottom[0]
l_top = net.top_names[l_name]
assert(len(l_top) == 1)
l_top = l_top[0]
can_be_absorbed = True
# Search all (bottom) layers
for j in xrange(i - 1, -1, -1):
tops_of_j = net.top_names[net._layer_names[j]]
if l_bottom in tops_of_j:
if net.layers[j].type not in ['Convolution', 'InnerProduct']:
can_be_absorbed = False
else:
# There must be only one layer
conv_ind = j
break
if not can_be_absorbed:
continue
# find the following Scale
scale_ind = None
for j in xrange(i + 1, len(net.layers)):
bottoms_of_j = net.bottom_names[net._layer_names[j]]
if l_top in bottoms_of_j:
if scale_ind:
# Followed by two or more layers
scale_ind = None
break
if net.layers[j].type in ['Scale']:
scale_ind = j
top_of_j = net.top_names[net._layer_names[j]][0]
if top_of_j == bottoms_of_j[0]:
# On-the-fly => Can be merged
break
else:
# Followed by a layer which is not 'Scale'
scale_ind = None
break
merge_conv_and_bn(net, conv_ind, i, scale_ind)
return net
def process_model(net, src_model, dst_model, func_loop, func_finally):
with open(src_model) as f:
model = caffe.proto.caffe_pb2.NetParameter()
pb.text_format.Merge(f.read(), model)
for i, layer in enumerate(model.layer):
map(lambda x: x(layer, net, model, i), func_loop)
map(lambda x: x(net, model), func_finally)
with open(dst_model, 'w') as f:
f.write(pb.text_format.MessageToString(model))
# Functions to remove (redundant) BN and Scale layers
to_delete_empty = []
def pick_empty_layers(layer, net, model, i):
if layer.type not in ['BatchNorm', 'Scale']:
return
bottom = layer.bottom[0]
top = layer.top[0]
if (bottom != top):
# Not supperted yet
return
if layer.type == 'BatchNorm':
zero_mean = np.all(net.params[layer.name][0].data == 0)
one_var = np.all(net.params[layer.name][1].data == 1)
#length_is_1 = (net.params['conv1_1/bn'][2].data == 1) or (net.params[layer.name][2].data == 0)
length_is_1 = (net.params[layer.name][2].data == 1)
if zero_mean and one_var and length_is_1:
print 'Delete layer: {}'.format(layer.name)
to_delete_empty.append(layer)
if layer.type == 'Scale':
no_scaling = np.all(net.params[layer.name][0].data == 1)
zero_bias = np.all(net.params[layer.name][1].data == 0)
if no_scaling and zero_bias:
print 'Delete layer: {}'.format(layer.name)
to_delete_empty.append(layer)
def remove_empty_layers(net, model):
map(model.layer.remove, to_delete_empty)
# A function to add 'engine: CAFFE' param into 1x1 convolutions
def set_engine_caffe(layer, net, model, i):
if layer.type == 'Convolution':
if layer.convolution_param.kernel_size == 1\
or (layer.convolution_param.kernel_h == layer.convolution_param.kernel_w == 1):
layer.convolution_param.engine = dict(layer.convolution_param.Engine.items())['CAFFE']
def main(args):
# Set default output file names
if args.output_model is None:
file_name = osp.splitext(args.model)[0]
args.output_model = file_name + '_inference.prototxt'
if args.output_weights is None:
file_name = osp.splitext(args.weights)[0]
args.output_weights = file_name + '_inference.caffemodel'
net = load_and_fill_biases(args.model, args.weights, args.model + '.temp.pt', None)
net = merge_batchnorms_in_net(net)
process_model(net, args.model + '.temp.pt', args.output_model,
[pick_empty_layers, set_engine_caffe],
[remove_empty_layers])
# Store params
net.save(args.output_weights)
if __name__ == '__main__':
parser = ArgumentParser(
description="Generate Batch Normalized model for inference")
parser.add_argument('model', help="The net definition prototxt")# 原模型文件
parser.add_argument('weights', help="The weights caffemodel") # 原权重文件
parser.add_argument('--output_model') # 去除BN层的模型文件
parser.add_argument('--output_weights')# 去除BN层后的权重文件
args = parser.parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。