代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/stylegan 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Main entry point for training StyleGAN and ProGAN networks."""
import copy
import dnnlib
from dnnlib import EasyDict
import config
from metrics import metric_base
#----------------------------------------------------------------------------
# Official training configs for StyleGAN, targeted mainly for FFHQ.
if 1:
desc = 'sgan' # Description string included in result subdir name.
train = EasyDict(run_func_name='training.training_loop.training_loop') # Options for training loop.
G = EasyDict(func_name='training.networks_stylegan.G_style') # Options for generator network.
D = EasyDict(func_name='training.networks_stylegan.D_basic') # Options for discriminator network.
G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for generator optimizer.
D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for discriminator optimizer.
G_loss = EasyDict(func_name='training.loss.G_logistic_nonsaturating') # Options for generator loss.
D_loss = EasyDict(func_name='training.loss.D_logistic_simplegp', r1_gamma=10.0) # Options for discriminator loss.
dataset = EasyDict() # Options for load_dataset().
sched = EasyDict() # Options for TrainingSchedule.
grid = EasyDict(size='4k', layout='random') # Options for setup_snapshot_image_grid().
metrics = [metric_base.fid50k] # Options for MetricGroup.
submit_config = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
# Dataset.
desc += '-ffhq'; dataset = EasyDict(tfrecord_dir='ffhq'); train.mirror_augment = True
#desc += '-ffhq512'; dataset = EasyDict(tfrecord_dir='ffhq', resolution=512); train.mirror_augment = True
#desc += '-ffhq256'; dataset = EasyDict(tfrecord_dir='ffhq', resolution=256); train.mirror_augment = True
#desc += '-celebahq'; dataset = EasyDict(tfrecord_dir='celebahq'); train.mirror_augment = True
#desc += '-bedroom'; dataset = EasyDict(tfrecord_dir='lsun-bedroom-full'); train.mirror_augment = False
#desc += '-car'; dataset = EasyDict(tfrecord_dir='lsun-car-512x384'); train.mirror_augment = False
#desc += '-cat'; dataset = EasyDict(tfrecord_dir='lsun-cat-full'); train.mirror_augment = False
# Number of GPUs.
#desc += '-1gpu'; submit_config.num_gpus = 1; sched.minibatch_base = 4; sched.minibatch_dict = {4: 128, 8: 128, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8, 512: 4}
#desc += '-2gpu'; submit_config.num_gpus = 2; sched.minibatch_base = 8; sched.minibatch_dict = {4: 256, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8}
#desc += '-4gpu'; submit_config.num_gpus = 4; sched.minibatch_base = 16; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16}
desc += '-8gpu'; submit_config.num_gpus = 8; sched.minibatch_base = 32; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32}
# Default options.
train.total_kimg = 25000
sched.lod_initial_resolution = 8
sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
sched.D_lrate_dict = EasyDict(sched.G_lrate_dict)
# WGAN-GP loss for CelebA-HQ.
#desc += '-wgangp'; G_loss = EasyDict(func_name='training.loss.G_wgan'); D_loss = EasyDict(func_name='training.loss.D_wgan_gp'); sched.G_lrate_dict = {k: min(v, 0.002) for k, v in sched.G_lrate_dict.items()}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict)
# Table 1.
#desc += '-tuned-baseline'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 0; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-add-mapping-and-styles'; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-remove-traditional-input'; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-add-noise-inputs'; G.style_mixing_prob = 0.0
#desc += '-mixing-regularization' # default
# Table 2.
#desc += '-mix0'; G.style_mixing_prob = 0.0
#desc += '-mix50'; G.style_mixing_prob = 0.5
#desc += '-mix90'; G.style_mixing_prob = 0.9 # default
#desc += '-mix100'; G.style_mixing_prob = 1.0
# Table 4.
#desc += '-traditional-0'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 0; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-traditional-8'; G.use_styles = False; G.use_pixel_norm = True; G.use_instance_norm = False; G.mapping_layers = 8; G.truncation_psi = None; G.const_input_layer = False; G.style_mixing_prob = 0.0; G.use_noise = False
#desc += '-stylebased-0'; G.mapping_layers = 0
#desc += '-stylebased-1'; G.mapping_layers = 1
#desc += '-stylebased-2'; G.mapping_layers = 2
#desc += '-stylebased-8'; G.mapping_layers = 8 # default
#----------------------------------------------------------------------------
# Official training configs for Progressive GAN, targeted mainly for CelebA-HQ.
if 0:
desc = 'pgan' # Description string included in result subdir name.
train = EasyDict(run_func_name='training.training_loop.training_loop') # Options for training loop.
G = EasyDict(func_name='training.networks_progan.G_paper') # Options for generator network.
D = EasyDict(func_name='training.networks_progan.D_paper') # Options for discriminator network.
G_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for generator optimizer.
D_opt = EasyDict(beta1=0.0, beta2=0.99, epsilon=1e-8) # Options for discriminator optimizer.
G_loss = EasyDict(func_name='training.loss.G_wgan') # Options for generator loss.
D_loss = EasyDict(func_name='training.loss.D_wgan_gp') # Options for discriminator loss.
dataset = EasyDict() # Options for load_dataset().
sched = EasyDict() # Options for TrainingSchedule.
grid = EasyDict(size='1080p', layout='random') # Options for setup_snapshot_image_grid().
metrics = [metric_base.fid50k] # Options for MetricGroup.
submit_config = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
# Dataset (choose one).
desc += '-celebahq'; dataset = EasyDict(tfrecord_dir='celebahq'); train.mirror_augment = True
#desc += '-celeba'; dataset = EasyDict(tfrecord_dir='celeba'); train.mirror_augment = True
#desc += '-cifar10'; dataset = EasyDict(tfrecord_dir='cifar10')
#desc += '-cifar100'; dataset = EasyDict(tfrecord_dir='cifar100')
#desc += '-svhn'; dataset = EasyDict(tfrecord_dir='svhn')
#desc += '-mnist'; dataset = EasyDict(tfrecord_dir='mnist')
#desc += '-mnistrgb'; dataset = EasyDict(tfrecord_dir='mnistrgb')
#desc += '-syn1024rgb'; dataset = EasyDict(class_name='training.dataset.SyntheticDataset', resolution=1024, num_channels=3)
#desc += '-lsun-airplane'; dataset = EasyDict(tfrecord_dir='lsun-airplane-100k'); train.mirror_augment = True
#desc += '-lsun-bedroom'; dataset = EasyDict(tfrecord_dir='lsun-bedroom-100k'); train.mirror_augment = True
#desc += '-lsun-bicycle'; dataset = EasyDict(tfrecord_dir='lsun-bicycle-100k'); train.mirror_augment = True
#desc += '-lsun-bird'; dataset = EasyDict(tfrecord_dir='lsun-bird-100k'); train.mirror_augment = True
#desc += '-lsun-boat'; dataset = EasyDict(tfrecord_dir='lsun-boat-100k'); train.mirror_augment = True
#desc += '-lsun-bottle'; dataset = EasyDict(tfrecord_dir='lsun-bottle-100k'); train.mirror_augment = True
#desc += '-lsun-bridge'; dataset = EasyDict(tfrecord_dir='lsun-bridge-100k'); train.mirror_augment = True
#desc += '-lsun-bus'; dataset = EasyDict(tfrecord_dir='lsun-bus-100k'); train.mirror_augment = True
#desc += '-lsun-car'; dataset = EasyDict(tfrecord_dir='lsun-car-100k'); train.mirror_augment = True
#desc += '-lsun-cat'; dataset = EasyDict(tfrecord_dir='lsun-cat-100k'); train.mirror_augment = True
#desc += '-lsun-chair'; dataset = EasyDict(tfrecord_dir='lsun-chair-100k'); train.mirror_augment = True
#desc += '-lsun-churchoutdoor'; dataset = EasyDict(tfrecord_dir='lsun-churchoutdoor-100k'); train.mirror_augment = True
#desc += '-lsun-classroom'; dataset = EasyDict(tfrecord_dir='lsun-classroom-100k'); train.mirror_augment = True
#desc += '-lsun-conferenceroom'; dataset = EasyDict(tfrecord_dir='lsun-conferenceroom-100k'); train.mirror_augment = True
#desc += '-lsun-cow'; dataset = EasyDict(tfrecord_dir='lsun-cow-100k'); train.mirror_augment = True
#desc += '-lsun-diningroom'; dataset = EasyDict(tfrecord_dir='lsun-diningroom-100k'); train.mirror_augment = True
#desc += '-lsun-diningtable'; dataset = EasyDict(tfrecord_dir='lsun-diningtable-100k'); train.mirror_augment = True
#desc += '-lsun-dog'; dataset = EasyDict(tfrecord_dir='lsun-dog-100k'); train.mirror_augment = True
#desc += '-lsun-horse'; dataset = EasyDict(tfrecord_dir='lsun-horse-100k'); train.mirror_augment = True
#desc += '-lsun-kitchen'; dataset = EasyDict(tfrecord_dir='lsun-kitchen-100k'); train.mirror_augment = True
#desc += '-lsun-livingroom'; dataset = EasyDict(tfrecord_dir='lsun-livingroom-100k'); train.mirror_augment = True
#desc += '-lsun-motorbike'; dataset = EasyDict(tfrecord_dir='lsun-motorbike-100k'); train.mirror_augment = True
#desc += '-lsun-person'; dataset = EasyDict(tfrecord_dir='lsun-person-100k'); train.mirror_augment = True
#desc += '-lsun-pottedplant'; dataset = EasyDict(tfrecord_dir='lsun-pottedplant-100k'); train.mirror_augment = True
#desc += '-lsun-restaurant'; dataset = EasyDict(tfrecord_dir='lsun-restaurant-100k'); train.mirror_augment = True
#desc += '-lsun-sheep'; dataset = EasyDict(tfrecord_dir='lsun-sheep-100k'); train.mirror_augment = True
#desc += '-lsun-sofa'; dataset = EasyDict(tfrecord_dir='lsun-sofa-100k'); train.mirror_augment = True
#desc += '-lsun-tower'; dataset = EasyDict(tfrecord_dir='lsun-tower-100k'); train.mirror_augment = True
#desc += '-lsun-train'; dataset = EasyDict(tfrecord_dir='lsun-train-100k'); train.mirror_augment = True
#desc += '-lsun-tvmonitor'; dataset = EasyDict(tfrecord_dir='lsun-tvmonitor-100k'); train.mirror_augment = True
# Conditioning & snapshot options.
#desc += '-cond'; dataset.max_label_size = 'full' # conditioned on full label
#desc += '-cond1'; dataset.max_label_size = 1 # conditioned on first component of the label
#desc += '-g4k'; grid.size = '4k'
#desc += '-grpc'; grid.layout = 'row_per_class'
# Config presets (choose one).
#desc += '-preset-v1-1gpu'; submit_config.num_gpus = 1; D.mbstd_group_size = 16; sched.minibatch_base = 16; sched.minibatch_dict = {256: 14, 512: 6, 1024: 3}; sched.lod_training_kimg = 800; sched.lod_transition_kimg = 800; train.total_kimg = 19000
desc += '-preset-v2-1gpu'; submit_config.num_gpus = 1; sched.minibatch_base = 4; sched.minibatch_dict = {4: 128, 8: 128, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8, 512: 4}; sched.G_lrate_dict = {1024: 0.0015}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-2gpus'; submit_config.num_gpus = 2; sched.minibatch_base = 8; sched.minibatch_dict = {4: 256, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8}; sched.G_lrate_dict = {512: 0.0015, 1024: 0.002}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-4gpus'; submit_config.num_gpus = 4; sched.minibatch_base = 16; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16}; sched.G_lrate_dict = {256: 0.0015, 512: 0.002, 1024: 0.003}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
#desc += '-preset-v2-8gpus'; submit_config.num_gpus = 8; sched.minibatch_base = 32; sched.minibatch_dict = {4: 512, 8: 256, 16: 128, 32: 64, 64: 32}; sched.G_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}; sched.D_lrate_dict = EasyDict(sched.G_lrate_dict); train.total_kimg = 12000
# Numerical precision (choose one).
desc += '-fp32'; sched.max_minibatch_per_gpu = {256: 16, 512: 8, 1024: 4}
#desc += '-fp16'; G.dtype = 'float16'; D.dtype = 'float16'; G.pixelnorm_epsilon=1e-4; G_opt.use_loss_scaling = True; D_opt.use_loss_scaling = True; sched.max_minibatch_per_gpu = {512: 16, 1024: 8}
# Disable individual features.
#desc += '-nogrowing'; sched.lod_initial_resolution = 1024; sched.lod_training_kimg = 0; sched.lod_transition_kimg = 0; train.total_kimg = 10000
#desc += '-nopixelnorm'; G.use_pixelnorm = False
#desc += '-nowscale'; G.use_wscale = False; D.use_wscale = False
#desc += '-noleakyrelu'; G.use_leakyrelu = False
#desc += '-nosmoothing'; train.G_smoothing_kimg = 0.0
#desc += '-norepeat'; train.minibatch_repeats = 1
#desc += '-noreset'; train.reset_opt_for_new_lod = False
# Special modes.
#desc += '-BENCHMARK'; sched.lod_initial_resolution = 4; sched.lod_training_kimg = 3; sched.lod_transition_kimg = 3; train.total_kimg = (8*2+1)*3; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1000; train.network_snapshot_ticks = 1000
#desc += '-BENCHMARK0'; sched.lod_initial_resolution = 1024; train.total_kimg = 10; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1000; train.network_snapshot_ticks = 1000
#desc += '-VERBOSE'; sched.tick_kimg_base = 1; sched.tick_kimg_dict = {}; train.image_snapshot_ticks = 1; train.network_snapshot_ticks = 100
#desc += '-GRAPH'; train.save_tf_graph = True
#desc += '-HIST'; train.save_weight_histograms = True
#----------------------------------------------------------------------------
# Main entry point for training.
# Calls the function indicated by 'train' using the selected options.
def main():
kwargs = EasyDict(train)
kwargs.update(G_args=G, D_args=D, G_opt_args=G_opt, D_opt_args=D_opt, G_loss_args=G_loss, D_loss_args=D_loss)
kwargs.update(dataset_args=dataset, sched_args=sched, grid_args=grid, metric_arg_list=metrics, tf_config=tf_config)
kwargs.submit_config = copy.deepcopy(submit_config)
kwargs.submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir)
kwargs.submit_config.run_dir_ignore += config.run_dir_ignore
kwargs.submit_config.run_desc = desc
dnnlib.submit_run(**kwargs)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。