加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
engine.py 5.19 KB
一键复制 编辑 原始数据 按行查看 历史
pengzhiliang 提交于 2021-05-09 11:44 . init
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import utils
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True
):
# TODO fix this for finetuning
model.train(set_training_mode)
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
if isinstance(outputs, list):
loss_list = [criterion(o, targets) / len(outputs) for o in outputs]
loss = sum(loss_list)
else:
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
if isinstance(outputs, list):
metric_logger.update(loss_0=loss_list[0].item())
metric_logger.update(loss_1=loss_list[1].item())
else:
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
# Conformer
if isinstance(output, list):
loss_list = [criterion(o, target) / len(output) for o in output]
loss = sum(loss_list)
# others
else:
loss = criterion(output, target)
if isinstance(output, list):
# Conformer
acc1_head1 = accuracy(output[0], target, topk=(1,))[0]
acc1_head2 = accuracy(output[1], target, topk=(1,))[0]
acc1_total = accuracy(output[0] + output[1], target, topk=(1,))[0]
else:
# others
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
if isinstance(output, list):
metric_logger.update(loss=loss.item())
metric_logger.update(loss_0=loss_list[0].item())
metric_logger.update(loss_1=loss_list[1].item())
metric_logger.meters['acc1'].update(acc1_total.item(), n=batch_size)
metric_logger.meters['acc1_head1'].update(acc1_head1.item(), n=batch_size)
metric_logger.meters['acc1_head2'].update(acc1_head2.item(), n=batch_size)
else:
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if isinstance(output, list):
print('* Acc@heads_top1 {heads_top1.global_avg:.3f} Acc@head_1 {head1_top1.global_avg:.3f} Acc@head_2 {head2_top1.global_avg:.3f} '
'loss@total {losses.global_avg:.3f} loss@1 {loss_0.global_avg:.3f} loss@2 {loss_1.global_avg:.3f} '
.format(heads_top1=metric_logger.acc1, head1_top1=metric_logger.acc1_head1, head2_top1=metric_logger.acc1_head2,
losses=metric_logger.loss, loss_0=metric_logger.loss_0, loss_1=metric_logger.loss_1))
else:
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化