代码拉取完成,页面将自动刷新
同步操作将从 pengzhiliang/Conformer 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
"""
Train and eval functions used in main.py
"""
import math
import sys
from typing import Iterable, Optional
import torch
from timm.data import Mixup
from timm.utils import accuracy, ModelEma
import utils
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None,
set_training_mode=True
):
# TODO fix this for finetuning
model.train(set_training_mode)
criterion.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
for samples, targets in metric_logger.log_every(data_loader, print_freq, header):
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
if isinstance(outputs, list):
loss_list = [criterion(o, targets) / len(outputs) for o in outputs]
loss = sum(loss_list)
else:
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
if isinstance(outputs, list):
metric_logger.update(loss_0=loss_list[0].item())
metric_logger.update(loss_1=loss_list[1].item())
else:
metric_logger.update(loss=loss_value)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for images, target in metric_logger.log_every(data_loader, 10, header):
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
# Conformer
if isinstance(output, list):
loss_list = [criterion(o, target) / len(output) for o in output]
loss = sum(loss_list)
# others
else:
loss = criterion(output, target)
if isinstance(output, list):
# Conformer
acc1_head1 = accuracy(output[0], target, topk=(1,))[0]
acc1_head2 = accuracy(output[1], target, topk=(1,))[0]
acc1_total = accuracy(output[0] + output[1], target, topk=(1,))[0]
else:
# others
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
if isinstance(output, list):
metric_logger.update(loss=loss.item())
metric_logger.update(loss_0=loss_list[0].item())
metric_logger.update(loss_1=loss_list[1].item())
metric_logger.meters['acc1'].update(acc1_total.item(), n=batch_size)
metric_logger.meters['acc1_head1'].update(acc1_head1.item(), n=batch_size)
metric_logger.meters['acc1_head2'].update(acc1_head2.item(), n=batch_size)
else:
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if isinstance(output, list):
print('* Acc@heads_top1 {heads_top1.global_avg:.3f} Acc@head_1 {head1_top1.global_avg:.3f} Acc@head_2 {head2_top1.global_avg:.3f} '
'loss@total {losses.global_avg:.3f} loss@1 {loss_0.global_avg:.3f} loss@2 {loss_1.global_avg:.3f} '
.format(heads_top1=metric_logger.acc1, head1_top1=metric_logger.acc1_head1, head2_top1=metric_logger.acc1_head2,
losses=metric_logger.loss, loss_0=metric_logger.loss_0, loss_1=metric_logger.loss_1))
else:
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。