Fetch the repository succeeded.
This action will force synchronization from chenmingling/MRI_Deep_learning, which will overwrite any changes that you have made since you forked the repository, and can not be recovered!!!
Synchronous operation will process in the background and will refresh the page when finishing processing. Please be patient.
'''
2-D Convolutional Neural Networks using TensorFlow library for MR Image reconstruction.
Author: MingliangChen
'''
from tqdm import tqdm
from data_inputs import *
from SRCNN_configs import *
import SRCNN_models
import tensorflow as tf
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
# Parameters
from SRCNN_configs import *
LEARNING_RATE = 0.001
TRAINING_EPOCHS = 50000
BATCH_SIZE = BATCH_SIZE_TRAINING
DISPLAY_STEP = 10
patch_size_PE =288
# Create Input and Output
with tf.name_scope('input'):
low_res_holder = tf.placeholder(tf.float32, shape=[BATCH_SIZE, patch_size_PE, patch_size_low, NUM_CHENNELS])
high_res_holder = tf.placeholder(tf.float32, shape=[BATCH_SIZE, patch_size_PE, patch_size, NUM_CHENNELS])
low_res_holder_validation = tf.placeholder(tf.float32, shape=[BATCH_SIZE, patch_size_PE, patch_size_low, NUM_CHENNELS])
high_res_holder_validation = tf.placeholder(tf.float32, shape=[BATCH_SIZE, patch_size_PE, patch_size, NUM_CHENNELS])
lr = tf.placeholder('float')
# tf.summary.image("input_image", tf.cast(low_res_holder, tf.uint8))
# tf.summary.image("taget_image", tf.cast(high_res_holder, tf.uint8))
# tf.summary.image("input_image", low_res_holder,10)
# tf.summary.image("taget_image", high_res_holder,10)
# with tf.name_scope('input_reshape'):
# low_res_image = tf.reshape(low_res_holder, shape=[BATCH_SIZE, patch_size/2, patch_size/2, NUM_CHENNELS])
# high_res_image = tf.reshape( high_res_holder, shape=[BATCH_SIZE, patch_size, patch_size, NUM_CHENNELS])
# CNN model
inferences = SRCNN_models.create_model(MODEL_NAME, low_res_holder, is_train= True)
# inferences_validation = SRCNN_models.create_model(MODEL_NAME, low_res_holder_validation,is_train= True)
# Loss function (MSE)
# training_loss = SRCNN_models.loss(inferences, high_res_image, name='training_loss', weights_decay=0)
training_loss = SRCNN_models.loss(inferences, high_res_holder, name='training_loss', weights_decay=0)
# validating_loss = SRCNN_models.loss(inferences_validation, high_res_holder_validation, name='validating_loss', weights_decay=0)
training_accuracy = SRCNN_models.PSNRLoss(inferences, high_res_holder, name= 'training_accurancy')
# ssim_loss1, ssim_loss2 = SRCNN_models.ssim_loss(inferences, high_res_image,BATCH_SIZE, PATCH_SIZE=patch_size, name='ssim_loss')
global_step = tf.Variable(0, trainable=False, name='global_step')
# learning_rate = tf.train.piecewise_constant(
# global_step,
# [2000, 5000, 8000, 12000, 16000],
# [0.0005, 0.0001, 0.00005, 0.00001, 0.000005, 0.000001]
# )
# learning_rate = tf.train.inverse_time_decay(0.0001, global_step, 10000, 2)
train_step = tf.train.AdamOptimizer(0.0001).minimize(training_loss, global_step=global_step)
'''
TensorFlow Session
'''
# start TensorFlow session
init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables())
tf.summary.scalar('training_loss', training_loss)
tf.summary.scalar('training_accuracy', training_accuracy)
# tf.summary.scalar('Learning_rate', learning_rate)
# tf.summary.scalar('validat_loss', validating_loss)
merged_summary_op = tf.summary.merge_all()
sess = tf.InteractiveSession()
#logs_path = "graph"
summary_writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(init)
saver.restore(sess, 'model2/mymodel')
# visualisation variables
train_accuracies = []
epochs_completed = 0
index_in_epoch = 0
# num_examples = train_images.shape[0]
# train_epoch = multi_channel_image_generator_complex_mat("data\\train/ceshi/multi_channel_after_scale",patch_size_low, Scale, BATCH_SIZE, True,
# seed=None)
# train_epoch = image_generator_complex_mat("data\\train\\zqq_data", patch_size_low, Scale,BATCH_SIZE, True,
# seed=None)
# train_epoch = image_generator_mat("data\\train\\ceshi\\Amp_FA1_echo1/", patch_size_low,1,BATCH_SIZE, True,
# seed=None)
# train_validation = image_generator_mat("data\\train\\ceshi\\test_Amp_FA1_echo1/", patch_size_low,1,BATCH_SIZE, True,
# seed=None)
# train_epoch = image_generator("data\\train\\ceshi/new_1_8/", patch_size_low,BATCH_SIZE, True,
# seed=None)
# train_validation = image_generator("data\\train\\ceshi/new_1_8/", patch_size_low,BATCH_SIZE, True,
# seed=None)
# train_epoch = image_generator_complex_mat("data\\train\\ceshi/single_echo_mat", patch_size_low,1,BATCH_SIZE, True,
# seed=None)
# train_validation = multi_channel_image_generator_complex_mat("data\\train/ceshi/test_multi_channel_after_scale",patch_size_low, Scale, BATCH_SIZE, True,
# seed=None)
# train_epoch = multi_channel_image_generator_complex_mat("data\\train\\ceshi\\FA1_3echo_picture_norm/", patch_size_low, 1, BATCH_SIZE, True,
# seed=None)
# train_validation = multi_channel_image_generator_complex_mat("data\\train\\ceshi\\test_FA1_3echo_picture_norm/", patch_size_low, 1, BATCH_SIZE, True,
# seed=None)
train_epoch = multi_channel_image_generator_mat("train\\Amp_6echo/factor_4_sense", patch_size_PE,patch_size_low, 1, BATCH_SIZE, True,
seed=None)
# train_validation = multi_channel_image_generator_complex_mat("train\\Amp_6echo/", patch_size_low, 1, BATCH_SIZE, True,
# seed=None)
# train_epoch = image_generator_mat("data\\train\\stage/", patch_size_low, Scale, BATCH_SIZE, False,
# seed=None)
# train_validation = image_generator_mat("train\\stage/", patch_size_low, 1, BATCH_SIZE, False,
# seed=None)
best_train_lost = 1
best_validation =1
require_improvement =100000
for i in tqdm(range(TRAINING_EPOCHS)):
# get new batch
# batch_xs, batch_ys = next_batch(BATCH_SIZE)
start = time.clock()
batch_xs, batch_ys = next(train_epoch)
# check progress on every 1st,2nd,...,10th,20th,...,100th... step
if i%100 ==0:
# batch_xs_validation, batch_ys_validation = next(train_validation)
train_accuracy, train_lost = sess.run([training_accuracy, training_loss],
feed_dict={low_res_holder: batch_xs, high_res_holder: batch_ys})
# validation_lost = sess.run(validating_loss,
# feed_dict={low_res_holder_validation: batch_xs_validation, high_res_holder_validation: batch_ys_validation})
train_accuracies.append(train_accuracy)
# print('epochs %d training_cost => %.7f train_accuracy => %.7f validation_lost => %.7f' % (i, train_lost, train_accuracy, validation_lost))
print('epochs %d training_cost => %.7f train_accuracy => %.7f ' % (i, train_lost, train_accuracy))
# check progress on every 1st,2nd,...,10th,20th,...,100th... step
# if i % DISPLAY_STEP == 0 or (i + 1) == TRAINING_EPOCHS:
# # train_accuracy, train_lost = sess.run([training_accuracy, training_loss],
# # feed_dict={low_res_holder: batch_xs, high_res_holder: batch_ys})
# # print('epochs %d training_cost => %.7f train_accuracy => %.7f' % (i, train_lost, train_accuracy))
# # train_accuracies.append(train_accuracy)
save_path = saver.save(sess, 'model2\mymodel')
# if i % (DISPLAY_STEP * 10) == 0 and i:
# DISPLAY_STEP *= 10
# if train_lost< best_train_lost:
# best_train_lost = train_lost
# save_path = saver.save(sess, 'model1\mymodel')
# if validation_lost < best_validation:
# best_validation = validation_lost
# save_path = saver.save(sess, 'model3\mymodel')
# last_improvement = i
# if i - last_improvement > require_improvement:
# print("No improvement found in a while, stopping optimization.")
# break
# train on batch
_, summary = sess.run([train_step, merged_summary_op],
feed_dict={low_res_holder: batch_xs, high_res_holder: batch_ys})
out = sess.run(inferences,feed_dict={low_res_holder: batch_xs, high_res_holder: batch_ys})
summary_writer.add_summary(summary, i)
end = time.clock()
# print("training time for once: ", str(end))
save_path = saver.save(sess, 'model\mymodel')
print("Model saved in file:", save_path)
sess.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。