加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 13.85 KB
一键复制 编辑 原始数据 按行查看 历史
xuannianz 提交于 2020-03-22 14:50 . get compatible with both tf1 and tf2
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
from datetime import date
import os
import sys
import tensorflow as tf
# import keras
# import keras.preprocessing.image
# import keras.backend as K
# from keras.optimizers import Adam, SGD
from tensorflow import keras
import tensorflow.keras.backend as K
from tensorflow.keras.optimizers import Adam, SGD
from augmentor.color import VisualEffect
from augmentor.misc import MiscEffect
from model import efficientdet
from losses import smooth_l1, focal, smooth_l1_quad
from efficientnet import BASE_WEIGHTS_PATH, WEIGHTS_HASHES
def makedirs(path):
# Intended behavior: try to create the directory,
# pass if the directory exists already, fails otherwise.
# Meant for Python 2.7/3.n compatibility.
try:
os.makedirs(path)
except OSError:
if not os.path.isdir(path):
raise
def get_session():
"""
Construct a modified tf session.
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
def create_callbacks(training_model, prediction_model, validation_generator, args):
"""
Creates the callbacks to use during training.
Args
training_model: The model that is used for training.
prediction_model: The model that should be used for validation.
validation_generator: The generator for creating validation data.
args: parseargs args object.
Returns:
A list of callbacks used for training.
"""
callbacks = []
tensorboard_callback = None
if args.tensorboard_dir:
if tf.version.VERSION > '2.0.0':
file_writer = tf.summary.create_file_writer(args.tensorboard_dir)
file_writer.set_as_default()
tensorboard_callback = keras.callbacks.TensorBoard(
log_dir=args.tensorboard_dir,
histogram_freq=0,
batch_size=args.batch_size,
write_graph=True,
write_grads=False,
write_images=False,
embeddings_freq=0,
embeddings_layer_names=None,
embeddings_metadata=None
)
callbacks.append(tensorboard_callback)
if args.evaluation and validation_generator:
if args.dataset_type == 'coco':
from eval.coco import Evaluate
# use prediction model for evaluation
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
else:
from eval.pascal import Evaluate
evaluation = Evaluate(validation_generator, prediction_model, tensorboard=tensorboard_callback)
callbacks.append(evaluation)
# save the model
if args.snapshots:
# ensure directory created first; otherwise h5py will error after epoch.
makedirs(args.snapshot_path)
checkpoint = keras.callbacks.ModelCheckpoint(
os.path.join(
args.snapshot_path,
f'{args.dataset_type}_{{epoch:02d}}_{{loss:.4f}}_{{val_loss:.4f}}.h5' if args.compute_val_loss
else f'{args.dataset_type}_{{epoch:02d}}_{{loss:.4f}}.h5'
),
verbose=1,
save_weights_only=True,
# save_best_only=True,
# monitor="mAP",
# mode='max'
)
callbacks.append(checkpoint)
# callbacks.append(keras.callbacks.ReduceLROnPlateau(
# monitor='loss',
# factor=0.1,
# patience=2,
# verbose=1,
# mode='auto',
# min_delta=0.0001,
# cooldown=0,
# min_lr=0
# ))
return callbacks
def create_generators(args):
"""
Create generators for training and validation.
Args
args: parseargs object containing configuration for generators.
preprocess_image: Function that preprocesses an image for the network.
"""
common_args = {
'batch_size': args.batch_size,
'phi': args.phi,
'detect_text': args.detect_text,
'detect_quadrangle': args.detect_quadrangle
}
# create random transform generator for augmenting training data
if args.random_transform:
misc_effect = MiscEffect()
visual_effect = VisualEffect()
else:
misc_effect = None
visual_effect = None
if args.dataset_type == 'pascal':
from generators.pascal import PascalVocGenerator
train_generator = PascalVocGenerator(
args.pascal_path,
'trainval',
skip_difficult=True,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
validation_generator = PascalVocGenerator(
args.pascal_path,
'val',
skip_difficult=True,
shuffle_groups=False,
**common_args
)
elif args.dataset_type == 'csv':
from generators.csv_ import CSVGenerator
train_generator = CSVGenerator(
args.annotations_path,
args.classes_path,
misc_effect=misc_effect,
visual_effect=visual_effect,
**common_args
)
if args.val_annotations_path:
validation_generator = CSVGenerator(
args.val_annotations_path,
args.classes_path,
shuffle_groups=False,
**common_args
)
else:
validation_generator = None
elif args.dataset_type == 'coco':
# import here to prevent unnecessary dependency on cocoapi
from generators.coco import CocoGenerator
train_generator = CocoGenerator(
args.coco_path,
'train2017',
misc_effect=misc_effect,
visual_effect=visual_effect,
group_method='random',
**common_args
)
validation_generator = CocoGenerator(
args.coco_path,
'val2017',
shuffle_groups=False,
**common_args
)
else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))
return train_generator, validation_generator
def check_args(parsed_args):
"""
Function to check for inherent contradictions within parsed arguments.
For example, batch_size < num_gpus
Intended to raise errors prior to backend initialisation.
Args
parsed_args: parser.parse_args()
Returns
parsed_args
"""
if parsed_args.gpu and parsed_args.batch_size < len(parsed_args.gpu.split(',')):
raise ValueError(
"Batch size ({}) must be equal to or higher than the number of GPUs ({})".format(parsed_args.batch_size,
len(parsed_args.gpu.split(
','))))
return parsed_args
def parse_args(args):
"""
Parse the arguments.
"""
today = str(date.today())
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
subparsers = parser.add_subparsers(help='Arguments for specific dataset types.', dest='dataset_type')
subparsers.required = True
coco_parser = subparsers.add_parser('coco')
coco_parser.add_argument('coco_path', help='Path to dataset directory (ie. /tmp/COCO).')
pascal_parser = subparsers.add_parser('pascal')
pascal_parser.add_argument('pascal_path', help='Path to dataset directory (ie. /tmp/VOCdevkit).')
csv_parser = subparsers.add_parser('csv')
csv_parser.add_argument('annotations_path', help='Path to CSV file containing annotations for training.')
csv_parser.add_argument('classes_path', help='Path to a CSV file containing class label mapping.')
csv_parser.add_argument('--val-annotations-path',
help='Path to CSV file containing annotations for validation (optional).')
parser.add_argument('--detect-quadrangle', help='If to detect quadrangle.', action='store_true', default=False)
parser.add_argument('--detect-text', help='If is text detection task.', action='store_true', default=False)
parser.add_argument('--snapshot', help='Resume training from a snapshot.')
parser.add_argument('--freeze-backbone', help='Freeze training of backbone layers.', action='store_true')
parser.add_argument('--freeze-bn', help='Freeze training of BatchNormalization layers.', action='store_true')
parser.add_argument('--weighted-bifpn', help='Use weighted BiFPN', action='store_true')
parser.add_argument('--batch-size', help='Size of the batches.', default=1, type=int)
parser.add_argument('--phi', help='Hyper parameter phi', default=0, type=int, choices=(0, 1, 2, 3, 4, 5, 6))
parser.add_argument('--gpu', help='Id of the GPU to use (as reported by nvidia-smi).')
parser.add_argument('--epochs', help='Number of epochs to train.', type=int, default=50)
parser.add_argument('--steps', help='Number of steps per epoch.', type=int, default=10000)
parser.add_argument('--snapshot-path',
help='Path to store snapshots of models during training',
default='checkpoints/{}'.format(today))
parser.add_argument('--tensorboard-dir', help='Log directory for Tensorboard output',
default='logs/{}'.format(today))
parser.add_argument('--no-snapshots', help='Disable saving snapshots.', dest='snapshots', action='store_false')
parser.add_argument('--no-evaluation', help='Disable per epoch evaluation.', dest='evaluation',
action='store_false')
parser.add_argument('--random-transform', help='Randomly transform image and annotations.', action='store_true')
parser.add_argument('--compute-val-loss', help='Compute validation loss during training', dest='compute_val_loss',
action='store_true')
# Fit generator arguments
parser.add_argument('--multiprocessing', help='Use multiprocessing in fit_generator.', action='store_true')
parser.add_argument('--workers', help='Number of generator workers.', type=int, default=1)
parser.add_argument('--max-queue-size', help='Queue length for multiprocessing workers in fit_generator.', type=int,
default=10)
print(vars(parser.parse_args(args)))
return check_args(parser.parse_args(args))
def main(args=None):
# parse arguments
if args is None:
args = sys.argv[1:]
args = parse_args(args)
# create the generators
train_generator, validation_generator = create_generators(args)
num_classes = train_generator.num_classes()
num_anchors = train_generator.num_anchors
# optionally choose specific GPU
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# K.set_session(get_session())
model, prediction_model = efficientdet(args.phi,
num_classes=num_classes,
num_anchors=num_anchors,
weighted_bifpn=args.weighted_bifpn,
freeze_bn=args.freeze_bn,
detect_quadrangle=args.detect_quadrangle
)
# load pretrained weights
if args.snapshot:
if args.snapshot == 'imagenet':
model_name = 'efficientnet-b{}'.format(args.phi)
file_name = '{}_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'.format(model_name)
file_hash = WEIGHTS_HASHES[model_name][1]
weights_path = keras.utils.get_file(file_name,
BASE_WEIGHTS_PATH + file_name,
cache_subdir='models',
file_hash=file_hash)
model.load_weights(weights_path, by_name=True)
else:
print('Loading model, this may take a second...')
model.load_weights(args.snapshot, by_name=True)
# freeze backbone layers
if args.freeze_backbone:
# 227, 329, 329, 374, 464, 566, 656
for i in range(1, [227, 329, 329, 374, 464, 566, 656][args.phi]):
model.layers[i].trainable = False
if args.gpu and len(args.gpu.split(',')) > 1:
model = keras.utils.multi_gpu_model(model, gpus=list(map(int, args.gpu.split(','))))
# compile model
model.compile(optimizer=Adam(lr=1e-3), loss={
'regression': smooth_l1_quad() if args.detect_quadrangle else smooth_l1(),
'classification': focal()
}, )
# print(model.summary())
# create the callbacks
callbacks = create_callbacks(
model,
prediction_model,
validation_generator,
args,
)
if not args.compute_val_loss:
validation_generator = None
elif args.compute_val_loss and validation_generator is None:
raise ValueError('When you have no validation data, you should not specify --compute-val-loss.')
# start training
return model.fit_generator(
generator=train_generator,
steps_per_epoch=args.steps,
initial_epoch=0,
epochs=args.epochs,
verbose=1,
callbacks=callbacks,
workers=args.workers,
use_multiprocessing=args.multiprocessing,
max_queue_size=args.max_queue_size,
validation_data=validation_generator
)
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化