代码拉取完成,页面将自动刷新
"""trt_yolov3.py
This script demonstrates how to do real-time object detection with
TensorRT optimized YOLOv3 engine.
"""
import sys
import time
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from utils.yolov3_classes import get_cls_dict
from utils.yolov3 import TrtYOLOv3
from utils.camera import add_camera_args, Camera
from utils.display import open_window, set_display, show_fps
from utils.visualization import BBoxVisualization
WINDOW_NAME = 'TrtYOLOv3Demo'
def parse_args():
"""Parse input arguments."""
desc = ('Capture and display live camera video, while doing '
'real-time object detection with TensorRT optimized '
'YOLOv3 model on Jetson Nano')
parser = argparse.ArgumentParser(description=desc)
parser = add_camera_args(parser)
parser.add_argument('--model', type=str, default='yolov3-416',
choices=['yolov3-288', 'yolov3-416', 'yolov3-608',
'yolov3-tiny-288', 'yolov3-tiny-416'])
args = parser.parse_args()
return args
def loop_and_detect(cam, trt_yolov3, conf_th, vis):
"""Continuously capture images from camera and do object detection.
# Arguments
cam: the camera instance (video source).
trt_yolov3: the TRT YOLOv3 object detector instance.
conf_th: confidence/score threshold for object detection.
vis: for visualization.
"""
full_scrn = False
fps = 0.0
tic = time.time()
while True:
if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
break
img = cam.read()
if img is not None:
boxes, confs, clss = trt_yolov3.detect(img, conf_th)
img = vis.draw_bboxes(img, boxes, confs, clss)
img = show_fps(img, fps)
cv2.imshow(WINDOW_NAME, img)
toc = time.time()
curr_fps = 1.0 / (toc - tic)
# calculate an exponentially decaying average of fps number
fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
tic = toc
key = cv2.waitKey(1)
if key == 27: # ESC key: quit program
break
elif key == ord('F') or key == ord('f'): # Toggle fullscreen
full_scrn = not full_scrn
set_display(WINDOW_NAME, full_scrn)
def main():
args = parse_args()
cam = Camera(args)
cam.open()
if not cam.is_opened:
sys.exit('Failed to open camera!')
cls_dict = get_cls_dict('coco')
yolo_dim = int(args.model.split('-')[-1]) # 416 or 608
trt_yolov3 = TrtYOLOv3(args.model, (yolo_dim, yolo_dim))
cam.start()
open_window(WINDOW_NAME, args.image_width, args.image_height,
'Camera TensorRT YOLOv3 Demo')
vis = BBoxVisualization(cls_dict)
loop_and_detect(cam, trt_yolov3, conf_th=0.3, vis=vis)
cam.stop()
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。