代码拉取完成,页面将自动刷新
from __future__ import division
from __future__ import print_function
import os, time, scipy.io, shutil
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import glob
import re
import cv2
from utils import *
from model import *
parser = argparse.ArgumentParser(description='Testing on DND dataset')
parser.add_argument('--ckpt', type=str, default='all',
choices=['all', 'real', 'synthetic'], help='checkpoint type')
parser.add_argument('--cpu', nargs='?', const=1, help = 'Use CPU')
args = parser.parse_args()
input_dir = './dataset/test/'
checkpoint_dir = './checkpoint/' + args.ckpt + '/'
result_dir = './result/'
test_fns = glob.glob(input_dir + '*.bmp')
# model load
if os.path.exists(checkpoint_dir + 'checkpoint.pth.tar'):
# load existing model
model_info = torch.load(checkpoint_dir + 'checkpoint.pth.tar')
print('==> loading existing model:', checkpoint_dir + 'checkpoint.pth.tar')
model = CBDNet()
if not args.cpu:
print('Using GPU!')
model.cuda()
else:
print('Using CPU!')
model.load_state_dict(model_info['state_dict'])
else:
print('Error: No trained model detected!')
exit(1)
if not os.path.isdir(result_dir + 'test/'):
os.makedirs(result_dir + 'test/')
for ind, test_fn in enumerate(test_fns):
model.eval()
with torch.no_grad():
print(test_fn)
noisy_img = cv2.imread(test_fn)
noisy_img = noisy_img[:,:,::-1] / 255.0
noisy_img = np.array(noisy_img).astype('float32')
temp_noisy_img = noisy_img
temp_noisy_img_chw = hwc_to_chw(temp_noisy_img)
input_var = torch.from_numpy(temp_noisy_img_chw.copy()).type(torch.FloatTensor).unsqueeze(0)
if not args.cpu:
input_var = input_var.cuda()
_, output = model(input_var)
output_np = output.squeeze().cpu().detach().numpy()
output_np = chw_to_hwc(np.clip(output_np, 0, 1))
temp = np.concatenate((temp_noisy_img, output_np), axis=1)
scipy.misc.toimage(temp*255, high=255, low=0, cmin=0, cmax=255).save(result_dir + 'test/test_%d.jpg'%(ind))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。