代码拉取完成,页面将自动刷新
import numpy as np
import torch
import os
import h5py
import pickle
import fnmatch
import cv2
from time import time
from torch.utils.data import TensorDataset, DataLoader
import torchvision.transforms as transforms
import IPython
e = IPython.embed
def flatten_list(l):
return [item for sublist in l for item in sublist]
class EpisodicDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path_list, camera_names, norm_stats, episode_ids, episode_len, chunk_size, policy_class):
super(EpisodicDataset).__init__()
self.episode_ids = episode_ids
self.dataset_path_list = dataset_path_list
self.camera_names = camera_names
self.norm_stats = norm_stats
self.episode_len = episode_len
self.chunk_size = chunk_size
self.cumulative_len = np.cumsum(self.episode_len)
self.max_episode_len = max(episode_len)
self.policy_class = policy_class
if self.policy_class == 'Diffusion':
self.augment_images = True
else:
self.augment_images = False
self.transformations = None
self.__getitem__(0) # initialize self.is_sim and self.transformations
self.is_sim = False
# def __len__(self):
# return sum(self.episode_len)
def _locate_transition(self, index):
assert index < self.cumulative_len[-1]
episode_index = np.argmax(self.cumulative_len > index) # argmax returns first True index
start_ts = index - (self.cumulative_len[episode_index] - self.episode_len[episode_index])
episode_id = self.episode_ids[episode_index]
return episode_id, start_ts
def __getitem__(self, index):
episode_id, start_ts = self._locate_transition(index)
dataset_path = self.dataset_path_list[episode_id]
try:
# print(dataset_path)
with h5py.File(dataset_path, 'r') as root:
try: # some legacy data does not have this attribute
is_sim = root.attrs['sim']
except:
is_sim = False
compressed = root.attrs.get('compress', False)
if '/base_action' in root:
base_action = root['/base_action'][()]
base_action = preprocess_base_action(base_action)
action = np.concatenate([root['/action'][()], base_action], axis=-1)
else:
action = root['/action'][()]
dummy_base_action = np.zeros([action.shape[0], 2])
action = np.concatenate([action, dummy_base_action], axis=-1)
original_action_shape = action.shape
episode_len = original_action_shape[0]
# get observation at start_ts only
qpos = root['/observations/qpos'][start_ts]
qvel = root['/observations/qvel'][start_ts]
image_dict = dict()
for cam_name in self.camera_names:
image_dict[cam_name] = root[f'/observations/images/{cam_name}'][start_ts]
if compressed:
for cam_name in image_dict.keys():
decompressed_image = cv2.imdecode(image_dict[cam_name], 1)
image_dict[cam_name] = np.array(decompressed_image)
# get all actions after and including start_ts
if is_sim:
action = action[start_ts:]
action_len = episode_len - start_ts
else:
action = action[max(0, start_ts - 1):] # hack, to make timesteps more aligned
action_len = episode_len - max(0, start_ts - 1) # hack, to make timesteps more aligned
# self.is_sim = is_sim
padded_action = np.zeros((self.max_episode_len, original_action_shape[1]), dtype=np.float32)
padded_action[:action_len] = action
is_pad = np.zeros(self.max_episode_len)
is_pad[action_len:] = 1
padded_action = padded_action[:self.chunk_size]
is_pad = is_pad[:self.chunk_size]
# new axis for different cameras
all_cam_images = []
for cam_name in self.camera_names:
all_cam_images.append(image_dict[cam_name])
all_cam_images = np.stack(all_cam_images, axis=0)
# construct observations
image_data = torch.from_numpy(all_cam_images)
qpos_data = torch.from_numpy(qpos).float()
action_data = torch.from_numpy(padded_action).float()
is_pad = torch.from_numpy(is_pad).bool()
# channel last
image_data = torch.einsum('k h w c -> k c h w', image_data)
# augmentation
if self.transformations is None:
print('Initializing transformations')
original_size = image_data.shape[2:]
ratio = 0.95
self.transformations = [
transforms.RandomCrop(size=[int(original_size[0] * ratio), int(original_size[1] * ratio)]),
transforms.Resize(original_size, antialias=True),
transforms.RandomRotation(degrees=[-5.0, 5.0], expand=False),
transforms.ColorJitter(brightness=0.3, contrast=0.4, saturation=0.5) #, hue=0.08)
]
if self.augment_images:
for transform in self.transformations:
image_data = transform(image_data)
# normalize image and change dtype to float
image_data = image_data / 255.0
if self.policy_class == 'Diffusion':
# normalize to [-1, 1]
action_data = ((action_data - self.norm_stats["action_min"]) / (self.norm_stats["action_max"] - self.norm_stats["action_min"])) * 2 - 1
else:
# normalize to mean 0 std 1
action_data = (action_data - self.norm_stats["action_mean"]) / self.norm_stats["action_std"]
qpos_data = (qpos_data - self.norm_stats["qpos_mean"]) / self.norm_stats["qpos_std"]
except:
print(f'Error loading {dataset_path} in __getitem__')
quit()
# print(image_data.dtype, qpos_data.dtype, action_data.dtype, is_pad.dtype)
return image_data, qpos_data, action_data, is_pad
def get_norm_stats(dataset_path_list):
all_qpos_data = []
all_action_data = []
all_episode_len = []
for dataset_path in dataset_path_list:
try:
with h5py.File(dataset_path, 'r') as root:
qpos = root['/observations/qpos'][()]
qvel = root['/observations/qvel'][()]
if '/base_action' in root:
base_action = root['/base_action'][()]
base_action = preprocess_base_action(base_action)
action = np.concatenate([root['/action'][()], base_action], axis=-1)
else:
action = root['/action'][()]
dummy_base_action = np.zeros([action.shape[0], 2])
action = np.concatenate([action, dummy_base_action], axis=-1)
except Exception as e:
print(f'Error loading {dataset_path} in get_norm_stats')
print(e)
quit()
all_qpos_data.append(torch.from_numpy(qpos))
all_action_data.append(torch.from_numpy(action))
all_episode_len.append(len(qpos))
all_qpos_data = torch.cat(all_qpos_data, dim=0)
all_action_data = torch.cat(all_action_data, dim=0)
# normalize action data
action_mean = all_action_data.mean(dim=[0]).float()
action_std = all_action_data.std(dim=[0]).float()
action_std = torch.clip(action_std, 1e-2, np.inf) # clipping
# normalize qpos data
qpos_mean = all_qpos_data.mean(dim=[0]).float()
qpos_std = all_qpos_data.std(dim=[0]).float()
qpos_std = torch.clip(qpos_std, 1e-2, np.inf) # clipping
action_min = all_action_data.min(dim=0).values.float()
action_max = all_action_data.max(dim=0).values.float()
eps = 0.0001
stats = {"action_mean": action_mean.numpy(), "action_std": action_std.numpy(),
"action_min": action_min.numpy() - eps,"action_max": action_max.numpy() + eps,
"qpos_mean": qpos_mean.numpy(), "qpos_std": qpos_std.numpy(),
"example_qpos": qpos}
return stats, all_episode_len
def find_all_hdf5(dataset_dir, skip_mirrored_data):
hdf5_files = []
for root, dirs, files in os.walk(dataset_dir):
for filename in fnmatch.filter(files, '*.hdf5'):
if 'features' in filename: continue
if skip_mirrored_data and 'mirror' in filename:
continue
hdf5_files.append(os.path.join(root, filename))
print(f'Found {len(hdf5_files)} hdf5 files')
return hdf5_files
def BatchSampler(batch_size, episode_len_l, sample_weights):
sample_probs = np.array(sample_weights) / np.sum(sample_weights) if sample_weights is not None else None
sum_dataset_len_l = np.cumsum([0] + [np.sum(episode_len) for episode_len in episode_len_l])
while True:
batch = []
for _ in range(batch_size):
episode_idx = np.random.choice(len(episode_len_l), p=sample_probs)
step_idx = np.random.randint(sum_dataset_len_l[episode_idx], sum_dataset_len_l[episode_idx + 1])
batch.append(step_idx)
yield batch
def load_data(dataset_dir_l, name_filter, camera_names, batch_size_train, batch_size_val, chunk_size, skip_mirrored_data=False, load_pretrain=False, policy_class=None, stats_dir_l=None, sample_weights=None, train_ratio=0.99):
if type(dataset_dir_l) == str:
dataset_dir_l = [dataset_dir_l]
dataset_path_list_list = [find_all_hdf5(dataset_dir, skip_mirrored_data) for dataset_dir in dataset_dir_l]
num_episodes_0 = len(dataset_path_list_list[0])
dataset_path_list = flatten_list(dataset_path_list_list)
dataset_path_list = [n for n in dataset_path_list if name_filter(n)]
num_episodes_l = [len(dataset_path_list) for dataset_path_list in dataset_path_list_list]
num_episodes_cumsum = np.cumsum(num_episodes_l)
# obtain train test split on dataset_dir_l[0]
shuffled_episode_ids_0 = np.random.permutation(num_episodes_0)
train_episode_ids_0 = shuffled_episode_ids_0[:int(train_ratio * num_episodes_0)]
val_episode_ids_0 = shuffled_episode_ids_0[int(train_ratio * num_episodes_0):]
train_episode_ids_l = [train_episode_ids_0] + [np.arange(num_episodes) + num_episodes_cumsum[idx] for idx, num_episodes in enumerate(num_episodes_l[1:])]
val_episode_ids_l = [val_episode_ids_0]
train_episode_ids = np.concatenate(train_episode_ids_l)
val_episode_ids = np.concatenate(val_episode_ids_l)
print(f'\n\nData from: {dataset_dir_l}\n- Train on {[len(x) for x in train_episode_ids_l]} episodes\n- Test on {[len(x) for x in val_episode_ids_l]} episodes\n\n')
# obtain normalization stats for qpos and action
# if load_pretrain:
# with open(os.path.join('/home/zfu/interbotix_ws/src/act/ckpts/pretrain_all', 'dataset_stats.pkl'), 'rb') as f:
# norm_stats = pickle.load(f)
# print('Loaded pretrain dataset stats')
_, all_episode_len = get_norm_stats(dataset_path_list)
train_episode_len_l = [[all_episode_len[i] for i in train_episode_ids] for train_episode_ids in train_episode_ids_l]
val_episode_len_l = [[all_episode_len[i] for i in val_episode_ids] for val_episode_ids in val_episode_ids_l]
train_episode_len = flatten_list(train_episode_len_l)
val_episode_len = flatten_list(val_episode_len_l)
if stats_dir_l is None:
stats_dir_l = dataset_dir_l
elif type(stats_dir_l) == str:
stats_dir_l = [stats_dir_l]
norm_stats, _ = get_norm_stats(flatten_list([find_all_hdf5(stats_dir, skip_mirrored_data) for stats_dir in stats_dir_l]))
print(f'Norm stats from: {stats_dir_l}')
batch_sampler_train = BatchSampler(batch_size_train, train_episode_len_l, sample_weights)
batch_sampler_val = BatchSampler(batch_size_val, val_episode_len_l, None)
# print(f'train_episode_len: {train_episode_len}, val_episode_len: {val_episode_len}, train_episode_ids: {train_episode_ids}, val_episode_ids: {val_episode_ids}')
# construct dataset and dataloader
train_dataset = EpisodicDataset(dataset_path_list, camera_names, norm_stats, train_episode_ids, train_episode_len, chunk_size, policy_class)
val_dataset = EpisodicDataset(dataset_path_list, camera_names, norm_stats, val_episode_ids, val_episode_len, chunk_size, policy_class)
train_num_workers = (8 if os.getlogin() == 'zfu' else 16) if train_dataset.augment_images else 2
val_num_workers = 8 if train_dataset.augment_images else 2
print(f'Augment images: {train_dataset.augment_images}, train_num_workers: {train_num_workers}, val_num_workers: {val_num_workers}')
train_dataloader = DataLoader(train_dataset, batch_sampler=batch_sampler_train, pin_memory=True, num_workers=train_num_workers, prefetch_factor=2)
val_dataloader = DataLoader(val_dataset, batch_sampler=batch_sampler_val, pin_memory=True, num_workers=val_num_workers, prefetch_factor=2)
return train_dataloader, val_dataloader, norm_stats, train_dataset.is_sim
def calibrate_linear_vel(base_action, c=None):
if c is None:
c = 0.0 # 0.19
v = base_action[..., 0]
w = base_action[..., 1]
base_action = base_action.copy()
base_action[..., 0] = v - c * w
return base_action
def smooth_base_action(base_action):
return np.stack([
np.convolve(base_action[:, i], np.ones(5)/5, mode='same') for i in range(base_action.shape[1])
], axis=-1).astype(np.float32)
def preprocess_base_action(base_action):
# base_action = calibrate_linear_vel(base_action)
base_action = smooth_base_action(base_action)
return base_action
def postprocess_base_action(base_action):
linear_vel, angular_vel = base_action
linear_vel *= 1.0
angular_vel *= 1.0
# angular_vel = 0
# if np.abs(linear_vel) < 0.05:
# linear_vel = 0
return np.array([linear_vel, angular_vel])
### env utils
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose
### helper functions
def compute_dict_mean(epoch_dicts):
result = {k: None for k in epoch_dicts[0]}
num_items = len(epoch_dicts)
for k in result:
value_sum = 0
for epoch_dict in epoch_dicts:
value_sum += epoch_dict[k]
result[k] = value_sum / num_items
return result
def detach_dict(d):
new_d = dict()
for k, v in d.items():
new_d[k] = v.detach()
return new_d
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。