代码拉取完成,页面将自动刷新
import torch
import argparse
import pathlib
from torch import nn
import torchvision
import os
import time
import h5py
import h5py
from torchvision import models, transforms
from PIL import Image
from tqdm import tqdm
import cv2
import numpy as np
import IPython
e = IPython.embed
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def expand_greyscale(t):
return t.expand(3, -1, -1)
def main(args):
#################################################
batch_size = 256
#################################################
ckpt_path = args.ckpt_path
dataset_dir = args.dataset_dir
ckpt_name = pathlib.PurePath(ckpt_path).name
dataset_name = ckpt_name.split('-')[1]
repr_type = ckpt_name.split('-')[0]
seed = int(ckpt_name.split('-')[-1][:-3])
if 'cotrain' in ckpt_name:
repr_type += '_cotrain'
episode_idxs = [int(name.split('_')[1].split('.')[0]) for name in os.listdir(dataset_dir) if ('.hdf5' in name) and ('features' not in name)]
episode_idxs.sort()
assert len(episode_idxs) == episode_idxs[-1] + 1 # no holes
num_episodes = len(episode_idxs)
feature_extractors = {}
for episode_idx in range(num_episodes):
# load all images
print(f'loading data')
dataset_path = os.path.join(dataset_dir, f'episode_{episode_idx}.hdf5')
with h5py.File(dataset_path, 'r') as root:
image_dict = {}
camera_names = list(root[f'/observations/images/'].keys())
print(f'Camera names: {camera_names}')
for cam_name in camera_names:
image = root[f'/observations/images/{cam_name}'][:]
uncompressed_image = []
for im in image:
im = np.array(cv2.imdecode(im, 1))
uncompressed_image.append(im)
image = np.stack(uncompressed_image, axis=0)
image_dict[cam_name] = image
print(f'loading model')
# load pretrain nets after cam names are known
if not feature_extractors:
for cam_name in camera_names:
resnet = torchvision.models.resnet18(pretrained=True)
loading_status = resnet.load_state_dict(torch.load(ckpt_path.replace('DUMMY', cam_name)))
print(cam_name, loading_status)
resnet = nn.Sequential(*list(resnet.children())[:-1])
resnet = resnet.cuda()
resnet.eval()
feature_extractors[cam_name] = resnet
# inference with resnet
feature_dict = {}
for cam_name, images in image_dict.items():
# Preprocess images
image_size = 120 # TODO NOTICE: reduced resolution
transform = transforms.Compose([
transforms.Resize(image_size), # will scale the image
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Lambda(expand_greyscale),
transforms.Normalize(
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225])),
])
processed_images = []
for image in tqdm(images):
image = Image.fromarray(image)
image = transform(image)
processed_images.append(image)
processed_images = torch.stack(processed_images).cuda()
# query the model
all_features = []
with torch.inference_mode():
for batch in chunks(processed_images, batch_size):
print('inference')
features = feature_extractors[cam_name](batch)
features = features.squeeze(axis=3).squeeze(axis=2)
all_features.append(features)
all_features = torch.cat(all_features, axis=0)
max_timesteps = all_features.shape[0]
feature_dict[cam_name] = all_features
# TODO START diagnostics
# first_image = images[0]
# first_processed_image = processed_images[0].cpu().numpy()
# first_feature = all_features[0].cpu().numpy()
# import numpy as np
# np.save('first_image.npy', first_image)
# np.save('first_processed_image.npy', first_processed_image)
# np.save('first_feature.npy', first_feature)
# torch.save(resnet.state_dict(), 'rn.ckpt')
# e()
# exit()
# TODO END diagnostics
# save
dataset_path = os.path.join(dataset_dir, f'{repr_type}_features_seed{seed}_episode_{episode_idx}.hdf5')
print(dataset_path)
# HDF5
t0 = time.time()
with h5py.File(dataset_path, 'w', rdcc_nbytes=1024 ** 2 * 2) as root:
features = root.create_group('features')
for cam_name, array in feature_dict.items():
cam_feature = features.create_dataset(cam_name, (max_timesteps, 512))
features[cam_name][...] = array.cpu().numpy()
print(f'Saving: {time.time() - t0:.1f} secs\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='cache features')
parser.add_argument('--ckpt_path', type=str, required=True, help='ckpt_path')
parser.add_argument('--dataset_dir', type=str, required=True, help='dataset_dir')
args = parser.parse_args()
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。