加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
train.py 10.58 KB
一键复制 编辑 原始数据 按行查看 历史
五粮液 提交于 2024-06-25 01:11 . Initial commit
import os
import time
import datetime
import numpy as np
import albumentations as A
import cv2
import torch
from torch.utils.data import Dataset, DataLoader
from utils import seeding, create_dir, print_and_save, shuffling, epoch_time, calculate_metrics
from model import New_UNet
from utils.metrics import DiceLoss
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
def load_names(path, file_path,flag:str):
f = open(file_path, "r")
data = f.read().split("\n")[:-1]
images = [os.path.join(path,flag,"images", name).replace('\\','/') for name in data]
masks = [os.path.join(path,flag,"masks", name).replace('\\','/') for name in data]
return images, masks
def load_data(path,flag:str):
train_names_path = f"{path}/train.txt"
valid_names_path = f"{path}/val.txt"
test_names_path = f"{path}/test.txt"
if flag=='train':
train_x, train_y = load_names(path, train_names_path, 'train')
valid_x, valid_y = load_names(path, valid_names_path, 'val')
return (train_x, train_y), (valid_x, valid_y)
else:
test_x, test_y = load_names(path, test_names_path, 'test')
return (test_x, test_y)
class DATASET(Dataset):
def __init__(self, images_path, masks_path, size, transform=None):
super().__init__()
self.images_path = images_path
self.masks_path = masks_path
self.transform = transform
self.n_samples = len(images_path)
self.size = size
def __getitem__(self, index):
""" Image """
# image = cv2.imread(self.images_path[index], cv2.IMREAD_COLOR)
# mask = cv2.imread(self.masks_path[index], cv2.IMREAD_GRAYSCALE)
# image = Image.open(self.images_path[index]).convert("RGB")
# mask = Image.open(self.masks_path[index]).convert("L")
image = cv2.imread(self.images_path[index],cv2.COLOR_BGR2GRAY)
mask = cv2.imread(self.masks_path[index], cv2.COLOR_BGR2GRAY)
if self.transform is not None:
augmentations = self.transform(image=image, mask=mask)
image = augmentations["image"]
mask = augmentations["mask"]
image = cv2.resize(image, (256,256))
image = np.transpose(image, (2, 0, 1))
image = image/255.0
mask = cv2.resize(mask, (256,256))
mask = np.expand_dims(mask, axis=0)
mask = mask/255.0
return image, mask
def __len__(self):
return self.n_samples
#训练过程
def train(model, loader, optimizer, loss_fn, device):
model.train()
epoch_loss = 0.0
epoch_jac = 0.0
epoch_f1 = 0.0
epoch_recall = 0.0
epoch_precision = 0.0
train_bar = tqdm(enumerate(loader), desc="Train",total=len(loader))
for i, (x, y) in train_bar:
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.float32)
optimizer.zero_grad()
# y_pred1,y_pred2 = model(x)
# loss1 = loss_fn(y_pred1, y)
# loss2 = loss_fn(y_pred2, y)
# loss = loss1+loss2
y_pred = model(x)
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
""" Calculate the metrics """
batch_jac = []
batch_f1 = []
batch_recall = []
batch_precision = []
for yt, yp in zip(y, y_pred):
score = calculate_metrics(yt, yp)
batch_jac.append(score[0])
batch_f1.append(score[1])
batch_recall.append(score[2])
batch_precision.append(score[3])
epoch_jac += np.mean(batch_jac)
epoch_f1 += np.mean(batch_f1)
epoch_recall += np.mean(batch_recall)
epoch_precision += np.mean(batch_precision)
epoch_loss = epoch_loss/len(loader)
epoch_jac = epoch_jac/len(loader)
epoch_f1 = epoch_f1/len(loader)
epoch_recall = epoch_recall/len(loader)
epoch_precision = epoch_precision/len(loader)
return epoch_loss, [epoch_jac, epoch_f1, epoch_recall, epoch_precision]
#验证过程
def evaluate(model, loader, loss_fn, device):
model.eval()
epoch_loss = 0
epoch_loss = 0.0
epoch_jac = 0.0
epoch_f1 = 0.0
epoch_recall = 0.0
epoch_precision = 0.0
var_bar = tqdm(enumerate(loader), desc="val",total=len(loader))
with torch.no_grad():
for i, (x, y) in var_bar:
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.float32)
# y_pred1,y_pred2 = model(x)
# loss1 = loss_fn(y_pred1, y)
# loss2 = loss_fn(y_pred2, y)
# loss = loss1+loss2
y_pred = model(x)
loss = loss_fn(y_pred,y)
epoch_loss += loss.item()
""" Calculate the metrics """
batch_jac = []
batch_f1 = []
batch_recall = []
batch_precision = []
for yt, yp in zip(y, y_pred):
score = calculate_metrics(yt, yp)
batch_jac.append(score[0])
batch_f1.append(score[1])
batch_recall.append(score[2])
batch_precision.append(score[3])
epoch_jac += np.mean(batch_jac)
epoch_f1 += np.mean(batch_f1)
epoch_recall += np.mean(batch_recall)
epoch_precision += np.mean(batch_precision)
epoch_loss = epoch_loss/len(loader)
epoch_jac = epoch_jac/len(loader)
epoch_f1 = epoch_f1/len(loader)
epoch_recall = epoch_recall/len(loader)
epoch_precision = epoch_precision/len(loader)
return epoch_loss, [epoch_jac, epoch_f1, epoch_recall, epoch_precision]
if __name__ == "__main__":
""" Seeding """
seeding(42)
model_name = 'New_UNet'
dataset_name = 'ISIC2018'
writer = SummaryWriter(f"logs/{model_name}/{dataset_name}")
""" Directories """
create_dir(f"files/{model_name}/{dataset_name}")
""" Training logfile """
train_log_path = f"files/{model_name}/{dataset_name}/train_log.txt"
if os.path.exists(train_log_path):
print("Log file exists")
else:
train_log = open(f"files/{model_name}/{dataset_name}/train_log.txt", "w")
train_log.write("\n")
train_log.close()
""" Record Date & Time """
datetime_object = str(datetime.datetime.now())
print_and_save(train_log_path, datetime_object)
print("")
""" Hyperparameters """
image_size = 256
size = (image_size, image_size)
batch_size = 8
num_epochs = 200
lr = 1e-4
early_stopping_patience = 50
checkpoint_path = f"files/{model_name}/{dataset_name}/checkpoint.pth"
#训练数据集目录
path = f"./Data/{dataset_name}/TrainDataset/"
data_str = f"Image Size: {size}\nBatch Size: {batch_size}\nLR: {lr}\nEpochs: {num_epochs}\n"
data_str += f"Early Stopping Patience: {early_stopping_patience}\n"
print_and_save(train_log_path, data_str)
""" Dataset """
(train_x, train_y), (valid_x, valid_y) = load_data(path,'train')
train_x, train_y = shuffling(train_x, train_y)
# train_x = train_x[:100]
# train_y = train_y[:100]
data_str = f"Dataset Size:\nTrain: {len(train_x)} - Valid: {len(valid_x)}\n"
print_and_save(train_log_path, data_str)
""" Data augmentation: Transforms """
transform = A.Compose([
A.Rotate(limit=35, p=0.3),
A.HorizontalFlip(p=0.3),
A.VerticalFlip(p=0.3),
A.CoarseDropout(p=0.3, max_holes=10, max_height=32, max_width=32)
])
""" Dataset and loader """
train_dataset = DATASET(train_x, train_y, size, transform=transform)
valid_dataset = DATASET(valid_x, valid_y, size, transform=None)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1
)
valid_loader = DataLoader(
dataset=valid_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=1
)
""" Model """
device = torch.device('cpu')
model = New_UNet(n_channels=1,num_classes=1)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=5, verbose=True)
loss_fn = DiceLoss()
loss_name = "DiceLoss"
data_str = f"Optimizer: Adam\nLoss: {loss_name}\n"
print_and_save(train_log_path, data_str)
""" Training the model """
best_valid_metrics = 0.0
early_stopping_count = 0
for epoch in range(num_epochs):
start_time = time.time()
"""train"""
train_loss, train_metrics = train(model, train_loader, optimizer, loss_fn, device)
writer.add_scalar("Train/Loss", train_loss, epoch)
writer.add_scalar('Train/IoU', train_metrics[0], epoch)
writer.add_scalar('Train/Dice', train_metrics[1], epoch)
writer.add_scalar('Train/Recall', train_metrics[2], epoch)
writer.add_scalar('Train/Precision', train_metrics[3], epoch)
"""val"""
valid_loss, valid_metrics = evaluate(model, valid_loader, loss_fn, device)
writer.add_scalar("Valid/Loss", valid_loss, epoch)
writer.add_scalar('Valid/IoU', valid_metrics[0], epoch)
writer.add_scalar('Valid/Dice', valid_metrics[1], epoch)
writer.add_scalar('Valid/Recall', valid_metrics[2], epoch)
writer.add_scalar('Valid/Precision', valid_metrics[3], epoch)
scheduler.step(valid_loss)
if valid_metrics[1] > best_valid_metrics:
data_str = f"Valid F1 improved from {best_valid_metrics:2.4f} to {valid_metrics[1]:2.4f}. Saving checkpoint: {checkpoint_path}"
print_and_save(train_log_path, data_str)
best_valid_metrics = valid_metrics[1]
torch.save(model.state_dict(), checkpoint_path)
early_stopping_count = 0
elif valid_metrics[1] < best_valid_metrics:
early_stopping_count += 1
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
data_str = f"Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s\n"
data_str += f"\tTrain Loss: {train_loss:.4f} - IoU: {train_metrics[0]:.4f} - Dice: {train_metrics[1]:.4f} - Recall: {train_metrics[2]:.4f} - Precision: {train_metrics[3]:.4f}\n"
data_str += f"\t Val. Loss: {valid_loss:.4f} - IoU: {valid_metrics[0]:.4f} - Dice: {valid_metrics[1]:.4f} - Recall: {valid_metrics[2]:.4f} - Precision: {valid_metrics[3]:.4f}\n"
print_and_save(train_log_path, data_str)
if early_stopping_count == early_stopping_patience:
data_str = f"Early stopping: validation loss stops improving from last {early_stopping_patience} continously.\n"
print_and_save(train_log_path, data_str)
break
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化