代码拉取完成,页面将自动刷新
同步操作将从 小乐major/VoiceprintRecognition-Pytorch 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import argparse
import functools
import numpy as np
import torch
from tqdm import tqdm
from utils.reader import load_audio
from utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('list_path', str, 'dataset/test_list.txt', '测试数据的数据列表路径')
add_arg('input_shape', str, '(1, 257, 257)', '数据输入的形状')
add_arg('model_path', str, 'models/resnet34.pth', '预测模型的路径')
args = parser.parse_args()
print_arguments(args)
device = torch.device("cuda")
# 加载模型
model = torch.jit.load(args.model_path)
model.to(device)
model.eval()
# 根据对角余弦值计算准确率
def cal_accuracy(y_score, y_true):
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
best_accuracy = 0
best_threshold = 0
for i in tqdm(range(0, 100)):
threshold = i * 0.01
y_test = (y_score >= threshold)
acc = np.mean((y_test == y_true).astype(int))
if acc > best_accuracy:
best_accuracy = acc
best_threshold = threshold
return best_accuracy, best_threshold
# 预测音频
def infer(audio_path):
input_shape = eval(args.input_shape)
data = load_audio(audio_path, mode='test', spec_len=input_shape[2])
data = data[np.newaxis, :]
data = torch.tensor(data, dtype=torch.float32, device=device)
# 执行预测
feature = model(data)
return feature.data.cpu().numpy()[0]
def get_all_audio_feature(list_path):
with open(list_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
features, labels = [], []
print('开始提取全部的音频特征...')
for line in tqdm(lines):
path, label = line.replace('\n', '').split('\t')
feature = infer(path)
features.append(feature)
labels.append(int(label))
return features, labels
# 计算对角余弦值
def cosin_metric(x1, x2):
return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
def main():
features, labels = get_all_audio_feature(args.list_path)
scores = []
y_true = []
print('开始两两对比音频特征...')
for i in tqdm(range(len(features))):
feature_1 = features[i]
for j in range(i, len(features)):
feature_2 = features[j]
score = cosin_metric(feature_1, feature_2)
scores.append(score)
y_true.append(int(labels[i] == labels[j]))
accuracy, threshold = cal_accuracy(scores, y_true)
print('当阈值为%f, 准确率最大,为:%f' % (threshold, accuracy))
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。