加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
train.py 13.89 KB
一键复制 编辑 原始数据 按行查看 历史
欧红旭 提交于 2020-06-08 14:55 . first commit
import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
# 数据参数
MODEL_DIR = 'model/' # inception-v3模型的文件夹
MODEL_FILE = 'tensorflow_inception_graph.pb' # inception-v3模型文件名
CACHE_DIR = 'data/tmp/bottleneck' # 图像的特征向量保存地址
INPUT_DATA = 'data/photos' # 图片数据文件夹
VALIDATION_PERCENTAGE = 10 # 验证数据的百分比
TEST_PERCENTAGE = 10 # 测试数据的百分比
# inception-v3模型参数
BOTTLENECK_TENSOR_SIZE = 2048 # inception-v3模型瓶颈层的节点个数
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0' # inception-v3模型中代表瓶颈层结果的张量名称
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0' # 图像输入张量对应的名称
# 神经网络的训练参数
LEARNING_RATE = 0.001
STEPS = 60000
BATCH = 100
CHECKPOINT_EVERY = 30000
NUM_CHECKPOINTS = 5
# 从数据文件夹中读取所有的图片列表并按训练、验证、测试分开
def create_image_lists(validation_percentage, test_percentage):
result = {} # 保存所有图像。key为类别名称。value也是字典,存储了所有的图片名称
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)] # 获取所有子目录
is_root_dir = True # 第一个目录为当前目录,需要忽略
# 分别对每个子目录进行操作
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue
# 获取当前目录下的所有有效图片
extensions = {'jpg', 'jpeg', 'JPG', 'JPEG'}
file_list = [] # 存储所有图像
dir_name = os.path.basename(sub_dir) # 获取路径的最后一个目录名字
for extension in extensions:
file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
file_list.extend(glob.glob(file_glob))
if not file_list:
continue
# 将当前类别的图片随机分为训练数据集、测试数据集、验证数据集
label_name = dir_name.lower() # 通过目录名获取类别的名称
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name) # 获取该图片的名称
chance = np.random.randint(100) # 随机产生100个数代表百分比
if chance < validation_percentage:
validation_images.append(base_name)
elif chance < (validation_percentage + test_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
# 将当前类别的数据集放入结果字典
result[label_name] = {
'dir': dir_name,
'training': training_images,
'testing': testing_images,
'validation': validation_images
}
# 返回整理好的所有数据
return result
# 通过类别名称、所属数据集、图片编号获取一张图片的地址
def get_image_path(image_lists, image_dir, label_name, index, category):
label_lists = image_lists[label_name] # 获取给定类别中的所有图片
category_list = label_lists[category] # 根据所属数据集的名称获取该集合中的全部图片
mod_index = index % len(category_list) # 规范图片的索引
base_name = category_list[mod_index] # 获取图片的文件名
sub_dir = label_lists['dir'] # 获取当前类别的目录名
full_path = os.path.join(image_dir, sub_dir, base_name) # 图片的绝对路径
return full_path
# 通过类别名称、所属数据集、图片编号获取特征向量值的地址
def get_bottleneck_path(image_lists, label_name, index, category):
return get_image_path(image_lists, CACHE_DIR, label_name, index,
category) + '.txt'
# 使用inception-v3处理图片获取特征向量
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
bottleneck_tensor):
bottleneck_values = sess.run(bottleneck_tensor,
{image_data_tensor: image_data})
bottleneck_values = np.squeeze(bottleneck_values) # 将四维数组压缩成一维数组
return bottleneck_values
# 获取一张图片经过inception-v3模型处理后的特征向量
def get_or_create_bottleneck(sess, image_lists, label_name, index, category,
jpeg_data_tensor, bottleneck_tensor):
# 获取一张图片对应的特征向量文件的路径
label_lists = image_lists[label_name]
sub_dir = label_lists['dir']
sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
if not os.path.exists(sub_dir_path):
os.makedirs(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
category)
# 如果该特征向量文件不存在,则通过inception-v3模型计算并保存
if not os.path.exists(bottleneck_path):
image_path = get_image_path(image_lists, INPUT_DATA, label_name, index,
category) # 获取图片原始路径
# print(image_path)
image_data = tf.io.gfile.GFile(image_path, 'rb').read() # 获取图片内容
bottleneck_values = run_bottleneck_on_image(
sess, image_data, jpeg_data_tensor,
bottleneck_tensor) # 通过inception-v3计算特征向量
# 将特征向量存入文件
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
else:
# 否则直接从文件中获取图片的特征向量
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
# 返回得到的特征向量
return bottleneck_values
# 随机获取一个batch图片作为训练数据
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many,
category, jpeg_data_tensor,
bottleneck_tensor):
bottlenecks = []
ground_truths = []
for _ in range(how_many):
# 随机一个类别和图片编号加入当前的训练数据
label_index = random.randrange(n_classes)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(65535)
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, image_index, category,
jpeg_data_tensor, bottleneck_tensor)
ground_truth = np.zeros(n_classes, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
return bottlenecks, ground_truths
# 获取全部的测试数据
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor,
bottleneck_tensor):
bottlenecks = []
ground_truths = []
label_name_list = list(image_lists.keys())
# 枚举所有的类别和每个类别中的测试图片
for label_index, label_name in enumerate(label_name_list):
category = 'testing'
for index, unused_base_name in enumerate(
image_lists[label_name][category]):
bottleneck = get_or_create_bottleneck(
sess, image_lists, label_name, index, category,
jpeg_data_tensor, bottleneck_tensor)
ground_truth = np.zeros(n_classes, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
return bottlenecks, ground_truths
def main(_):
# 读取所有的图片
image_lists = create_image_lists(VALIDATION_PERCENTAGE, TEST_PERCENTAGE)
n_classes = len(image_lists.keys())
with tf.Graph().as_default() as graph:
# 读取训练好的inception-v3模型
with tf.io.gfile.GFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
# 加载inception-v3模型,并返回数据输入张量和瓶颈层输出张量
bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(
graph_def,
return_elements=[
BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME
])
# 定义新的神经网络输入
bottleneck_input = tf.compat.v1.placeholder(
tf.float32, [None, BOTTLENECK_TENSOR_SIZE],
name='BottleneckInputPlaceholder')
# 定义新的标准答案输入
ground_truth_input = tf.compat.v1.placeholder(
tf.float32, [None, n_classes], name='GroundTruthInput')
# 定义一层全连接层解决新的图片分类问题
with tf.name_scope('final_training_ops'):
weights = tf.Variable(
tf.random.truncated_normal(
[BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.1))
biases = tf.Variable(tf.zeros([n_classes]))
logits = tf.matmul(bottleneck_input, weights) + biases
final_tensor = tf.nn.softmax(logits)
# 定义交叉熵损失函数
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(
logits=logits, labels=ground_truth_input)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
train_step = tf.compat.v1.train.GradientDescentOptimizer(LEARNING_RATE).minimize(
cross_entropy_mean)
# 计算正确率
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(
tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
evaluation_step = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32))
# 训练过程
with tf.compat.v1.Session(graph=graph) as sess:
init = tf.compat.v1.global_variables_initializer().run()
# 模型和摘要的保存目录
import time
timestamp = str(int(time.time()))
out_dir = os.path.abspath(
os.path.join(os.path.curdir, 'runs', timestamp))
print('\nWriting to {}\n'.format(out_dir))
# 损失值和正确率的摘要
loss_summary = tf.compat.v1.summary.scalar('loss', cross_entropy_mean)
acc_summary = tf.compat.v1.summary.scalar('accuracy', evaluation_step)
# 训练摘要
train_summary_op = tf.compat.v1.summary.merge([loss_summary, acc_summary])
train_summary_dir = os.path.join(out_dir, 'summaries', 'train')
train_summary_writer = tf.compat.v1.summary.FileWriter(train_summary_dir,
sess.graph)
# 开发摘要
dev_summary_op = tf.compat.v1.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, 'summaries', 'dev')
dev_summary_writer = tf.compat.v1.summary.FileWriter(dev_summary_dir, sess.graph)
# 保存检查点
checkpoint_dir = os.path.abspath(os.path.join(out_dir, 'checkpoints'))
checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.compat.v1.train.Saver(
tf.compat.v1.global_variables(), max_to_keep=NUM_CHECKPOINTS)
for i in range(STEPS):
# 每次获取一个batch的训练数据
train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
sess, n_classes, image_lists, BATCH, 'training',
jpeg_data_tensor, bottleneck_tensor)
_, train_summaries = sess.run(
[train_step, train_summary_op],
feed_dict={
bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth
})
# 保存每步的摘要
train_summary_writer.add_summary(train_summaries, i)
# 在验证集上测试正确率
if i % 100 == 0 or i + 1 == STEPS:
validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
sess, n_classes, image_lists, BATCH, 'validation',
jpeg_data_tensor, bottleneck_tensor)
validation_accuracy, dev_summaries = sess.run(
[evaluation_step, dev_summary_op],
feed_dict={
bottleneck_input: validation_bottlenecks,
ground_truth_input: validation_ground_truth
})
print(
'Step %d : Validation accuracy on random sampled %d examples = %.1f%%'
% (i, BATCH, validation_accuracy * 100))
# 每隔checkpoint_every保存一次模型和测试摘要
if i % CHECKPOINT_EVERY == 0:
dev_summary_writer.add_summary(dev_summaries, i)
path = saver.save(sess, checkpoint_prefix, global_step=i)
print('Saved model checkpoint to {}\n'.format(path))
# 最后在测试集上测试正确率
test_bottlenecks, test_ground_truth = get_test_bottlenecks(
sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor)
test_accuracy = sess.run(
evaluation_step,
feed_dict={
bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth
})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100))
# 保存标签
output_labels = os.path.join(out_dir, 'labels.txt')
with tf.io.gfile.GFile(output_labels, 'w') as f:
keys = list(image_lists.keys())
for i in range(len(keys)):
keys[i] = '%2d -> %s' % (i, keys[i])
f.write('\n'.join(keys) + '\n')
if __name__ == '__main__':
tf.compat.v1.app.run()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化