加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval_dense_unet.py 7.47 KB
一键复制 编辑 原始数据 按行查看 历史
fengfeng 提交于 2022-05-06 23:28 . Dense全局预测Bug修改---
import click
import cv2
import nibabel as nib
import numpy as np
import torch
import torch.nn as nn
from pathlib2 import Path
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
import utils.checkpoint as cp
from dataset import KiTS19
from dataset.transform import MedicalTransform
from network import DenseUNet
from utils.vis import imshow
@click.command()
@click.option('-b', '--batch', 'batch_size', help='Number of batch size', type=int, default=1, show_default=True)
@click.option('-g', '--num_gpu', help='Number of GPU', type=int, default=1, show_default=True)
@click.option('-s', '--size', 'img_size', help='Output image size', type=(int, int),
default=(512, 512), show_default=True)
@click.option('-d', '--data', 'data_path', help='Path of kits19 data after conversion',
type=click.Path(exists=True, dir_okay=True, resolve_path=True),
default='data', show_default=True)
@click.option('-r', '--resume', help='Resume model',
type=click.Path(exists=True, file_okay=True, resolve_path=True),default='runs/DenseUNet/checkpoint/best.pth', required=True)
@click.option('-o', '--output', 'output_path', help='output image path',
type=click.Path(dir_okay=True, resolve_path=True), default='out_test', show_default=True)
@click.option('--vis_intvl', help='Number of iteration interval of display visualize image. '
'No display when set to 0',
type=int, default=20, show_default=True)
@click.option('--num_workers', help='Number of workers on dataloader. '
'Recommend 0 in Windows. '
'Recommend num_gpu in Linux',
type=int, default=0, show_default=True)
def main(batch_size, num_gpu, img_size, data_path, resume, output_path, vis_intvl, num_workers):
data_path = Path(data_path)
output_path = Path(output_path)
if not output_path.exists():
output_path.mkdir(parents=True)
roi_error_range = 0
transform = MedicalTransform(output_size=img_size, roi_error_range=roi_error_range, use_roi=True)
dataset = KiTS19(data_path, stack_num=3, spec_classes=[0, 1, 2], img_size=img_size,
use_roi=True, roi_file='roi.json', roi_error_range=0, test_transform=transform)
net = DenseUNet(in_ch=dataset.img_channels, out_ch=dataset.num_classes)
if resume:
data = {'net': net}
cp_file = Path(resume)
cp.load_params(data, cp_file, device='cpu')
gpu_ids = [i for i in range(num_gpu)]
print(f'{" Start evaluation ":-^40s}\n')
msg = f'Net: {net.__class__.__name__}\n' + \
f'Dataset: {dataset.__class__.__name__}\n' + \
f'Batch size: {batch_size}\n' + \
f'Device: cuda{str(gpu_ids)}\n'
print(msg)
torch.cuda.empty_cache()
net = torch.nn.DataParallel(net, device_ids=gpu_ids).cuda()
net.eval()
torch.set_grad_enabled(False)
transform.eval()
subset = dataset.test_dataset
case_slice_indices = dataset.test_case_slice_indices
sampler = SequentialSampler(subset)
data_loader = DataLoader(subset, batch_size=batch_size, sampler=sampler,
num_workers=num_workers, pin_memory=True)
case = 0
vol_output = []
with tqdm(total=len(case_slice_indices) - 1, ascii=True, desc=f'eval/test', dynamic_ncols=True) as pbar:
for batch_idx, data in enumerate(data_loader):
imgs, idx = data['image'].cuda(), data['index']
outputs = net(imgs)
predicts = outputs['output']
predicts = predicts.argmax(dim=1)
predicts = predicts.cpu().detach().numpy()
idx = idx.numpy()
vol_output.append(predicts)
while case < len(case_slice_indices) - 1 and idx[-1] >= case_slice_indices[case + 1] - 1:
vol_output = np.concatenate(vol_output, axis=0)
vol_num_slice = case_slice_indices[case + 1] - case_slice_indices[case]
roi = dataset.get_roi(case, type='test')
vol = vol_output[:vol_num_slice]
vol_ = reverse_transform(vol, roi, dataset, transform)
vol_ = vol_.astype(np.uint8)
print(vol_.shape)
vol_ = vol_.transpose(1, 2, 0)
case_id = dataset.case_idx_to_case_id(case, type='test')
affine = np.load(data_path / f'case_{case_id:05d}' / 'affine.npy')
vol_nii = nib.Nifti1Image(vol_, affine)
vol_nii_filename = output_path / f'prediction_{case_id:05d}.nii.gz'
vol_nii.to_filename(str(vol_nii_filename))
vol_output = [vol_output[vol_num_slice:]]
case += 1
pbar.update(1)
if vis_intvl > 0 and batch_idx % vis_intvl == 0:
data['predict'] = predicts
data = dataset.vis_transform(data)
imgs, predicts = data['image'], data['predict']
imshow(title=f'eval/test', imgs=(imgs[0, 1], predicts[0]), shape=(1, 2),
subtitle=('image', 'predict'))
def reverse_transform(vol, roi, dataset, transform):
print(roi)
print(vol.shape)
min_x = max(0, roi['kidney']['min_x'] - transform.roi_error_range)
max_x = min(vol.shape[-1], roi['kidney']['max_x'] + transform.roi_error_range)
min_y = max(0, roi['kidney']['min_y'] - transform.roi_error_range)
max_y = min(vol.shape[-2], roi['kidney']['max_y'] + transform.roi_error_range)
min_z = max(0, roi['kidney']['min_z'] - dataset.roi_error_range)
max_z = min(roi['vol']['total_z'], roi['kidney']['max_z'] + dataset.roi_error_range)
min_height = roi['vol']['total_y']
min_width = roi['vol']['total_x']
roi_rows = max_y - min_y
roi_cols = max_x - min_x
max_size = max(transform.output_size[0], transform.output_size[1])
scale = max_size / float(max(roi_cols, roi_rows))
rows = int(roi_rows * scale)
cols = int(roi_cols * scale)
if rows < min_height:
h_pad_top = int((min_height - rows) / 2.0)
h_pad_bottom = rows + h_pad_top
else:
h_pad_top = 0
h_pad_bottom = min_height
if cols < min_width:
w_pad_left = int((min_width - cols) / 2.0)
w_pad_right = cols + w_pad_left
else:
w_pad_left = 0
w_pad_right = min_width
for i in range(len(vol)):
img = vol[i]
print(vol.shape)
print(img)
reverse_padding_img = img[h_pad_top:h_pad_bottom, w_pad_left:w_pad_right]
reverse_padding_img = reverse_padding_img.astype(np.uint8)
reverse_resize_img = cv2.resize(reverse_padding_img, dsize=(max_x - min_x, max_y - min_y),
interpolation=cv2.INTER_LINEAR)
reverse_resize_img = reverse_resize_img.astype(np.int64)
reverse_img = np.zeros((min_height, min_width))
reverse_img[min_y:max_y, min_x: max_x] = reverse_resize_img
vol[i] = reverse_img
size = (1, min_height, min_width)
vol_min_z = [np.zeros(size) for _ in range(0, min_z)]
vol_max_z = [np.zeros(size) for _ in range(max_z, roi['vol']['total_z'])]
vol = vol_min_z + [vol] + vol_max_z
vol = np.concatenate(vol, axis=0)
assert vol.shape == (roi['vol']['total_z'], roi['vol']['total_y'], roi['vol']['total_x'])
return vol
if __name__ == '__main__':
main()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化