代码拉取完成,页面将自动刷新
import json
import click
import cv2
import nibabel as nib
import numpy as np
import torch
from pathlib2 import Path
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
import utils.checkpoint as cp
from dataset import KiTS19
from dataset.transform import MedicalTransform
from network import ResUNet
from utils.vis import imshow
def calc(seg, idx):
bincount = np.bincount(seg.flatten())
area = int(bincount[idx])
value = []
for i in range(seg.shape[0]):
value.append(seg[i].max())
value = np.array(value)
slice_ = np.where(value > idx - 1)[0]
num_slice = len(slice_)
min_z = int(slice_.min())
max_z = int(slice_.max()) + 1
min_x = min_y = 10000
max_x = max_y = -1
for i in range(min_z, max_z):
if seg[i].max() > idx - 1:
mask = np.ma.masked_where(seg[i] > idx - 1, seg[i]).mask
rect = cv2.boundingRect(mask.astype(np.uint8))
min_x = min(min_x, rect[0])
min_y = min(min_y, rect[1])
max_x = max(max_x, rect[0] + rect[2])
max_y = max(max_y, rect[1] + rect[3])
roi = {'min_x': min_x, 'min_y': min_y, 'min_z': min_z,
'max_x': max_x, 'max_y': max_y, 'max_z': max_z,
'area': area, 'slice': num_slice}
return roi
def get_roi_from_gt(data_path, roi_file):
data_path = Path(data_path)
cases = sorted([d for d in data_path.iterdir() if d.is_dir()])
case_idx = 0
rois = {}
for case in tqdm(cases, ascii=True, dynamic_ncols=True):
img_file = case / 'imaging.nii.gz'
assert img_file.exists()
img = nib.load(str(img_file)).get_data()
total_z, total_y, total_x = img.shape
vol = {'total_x': total_x, 'total_y': total_y, 'total_z': total_z}
case_data = {'vol': vol}
seg_file = case / 'segmentation.nii.gz'
if seg_file.exists():
seg = nib.load(str(seg_file)).get_data()
kidney = calc(seg, idx=1)
tumor = calc(seg, idx=2)
case_data.update({'kidney': kidney, 'tumor': tumor})
rois[f'case_{case_idx:05d}'] = case_data
with open(roi_file, 'w') as f:
json.dump(rois, f, indent=4, separators=(',', ': '))
case_idx += 1
def get_roi_from_resunet(batch_size, num_gpu, img_size, data_path, resume, roi_file, vis_intvl, num_workers):
with open(roi_file, 'r') as f:
rois = json.load(f)
data_path = Path(data_path)
transform = MedicalTransform(output_size=img_size, roi_error_range=15, use_roi=False)
dataset = KiTS19(data_path, stack_num=5, spec_classes=[0, 1, 1], img_size=img_size,
use_roi=False, train_transform=transform, valid_transform=transform)
net = ResUNet(in_ch=dataset.img_channels, out_ch=dataset.num_classes, base_ch=64)
if resume:
data = {'net': net}
cp_file = Path(resume)
cp.load_params(data, cp_file, device='cpu')
gpu_ids = [i for i in range(num_gpu)]
torch.cuda.empty_cache()
net = torch.nn.DataParallel(net, device_ids=gpu_ids).cuda()
net.eval()
torch.set_grad_enabled(False)
transform.eval()
subset = dataset.test_dataset
case_slice_indices = dataset.test_case_slice_indices
sampler = SequentialSampler(subset)
data_loader = DataLoader(subset, batch_size=batch_size, sampler=sampler,
num_workers=num_workers, pin_memory=True)
case = 0
vol_output = []
with tqdm(total=len(case_slice_indices) - 1, ascii=True, desc=f'eval/test', dynamic_ncols=True) as pbar:
for batch_idx, data in enumerate(data_loader):
imgs, idx = data['image'].cuda(), data['index']
predicts = net(imgs)
predicts = predicts.argmax(dim=1)
predicts = predicts.cpu().detach().numpy()
idx = idx.numpy()
vol_output.append(predicts)
while case < len(case_slice_indices) - 1 and idx[-1] >= case_slice_indices[case + 1] - 1:
vol_output = np.concatenate(vol_output, axis=0)
vol_num_slice = case_slice_indices[case + 1] - case_slice_indices[case]
vol = vol_output[:vol_num_slice]
kidney = calc(vol, idx=1)
print("执行到此!!!!!!!!")
case_roi = {'kidney': kidney}
case_id = dataset.case_idx_to_case_id(case, 'test')
rois[f'case_{case_id:05d}'].update(case_roi)
with open(roi_file, 'w') as f:
json.dump(rois, f, indent=4, separators=(',', ': '))
vol_output = [vol_output[vol_num_slice:]]
case += 1
pbar.update(1)
# if vis_intvl > 0 and batch_idx % vis_intvl == 0:
# data['predict'] = predicts
# data = dataset.vis_transform(data)
# imgs, predicts = data['image'], data['predict']
# imshow(title=f'eval/test', imgs=(imgs[0, 1], predicts[0]), shape=(1, 2),
# subtitle=('image', 'predict'))
@click.command()
@click.option('--org_data', 'org_data_path', help='kits19 data path',
type=click.Path(exists=True, dir_okay=True, resolve_path=True),
default='data', show_default=True)
@click.option('--data', 'data_path', help='Path of kits19 data after conversion',
type=click.Path(exists=True, dir_okay=True, resolve_path=True),
default='data', show_default=True)
@click.option('-o', '--output', 'roi_file', help='Output roi file path',
type=click.Path(file_okay=True, resolve_path=True), default='roi_gt.json', show_default=True)
@click.option('-b', '--batch', 'batch_size', help='Number of batch size', type=int, default=1, show_default=True)
@click.option('-g', '--num_gpu', help='Number of GPU', type=int, default=1, show_default=True)
@click.option('-s', '--size', 'img_size', help='Output image size', type=(int, int),
default=(512, 512), show_default=True)
@click.option('-r', '--resume', help='Resume model',
type=click.Path(exists=True, file_okay=True, resolve_path=True), required=True)
@click.option('--vis_intvl', help='Number of iteration interval of display visualize image. '
'No display when set to 0',
type=int, default=20, show_default=True)
@click.option('--num_workers', help='Number of workers on dataloader. '
'Recommend 0 in Windows. '
'Recommend num_gpu in Linux',
type=int, default=0, show_default=True)
def get_roi(org_data_path, data_path, roi_file, batch_size, num_gpu, img_size, resume, vis_intvl, num_workers):
#get_roi_from_gt(org_data_path, roi_file)
get_roi_from_resunet(batch_size, num_gpu, img_size, data_path, resume, roi_file, vis_intvl, num_workers)
if __name__ == '__main__':
get_roi()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。