加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
run_main.py 17.78 KB
一键复制 编辑 原始数据 按行查看 历史
Gypsop 提交于 2019-02-27 17:34 . Add files via upload
# -*- coding: utf-8 -*-
# Author : Xiaosheng, Zhu (Shandong University of Science and Technology, Hongkong Polytechnic University, Gome Finance)
# Created on: Jan 23rd, 2019
# Topic : Geo-Image (Remote Sensing) Reading and Processing
#
# ----------Update Log----------
# Update 1 : Jan 24th, 2019
# Change the preview of current image from BMP files to a matplotlib plot with subplots containing the view of each band.
# Code tidied up.
# More comments added.
# Headfile (*.hdr) existence judgment added and other parts of the code modified to suit the judgement.
# ***File selection by user is in designing, will work in next version.***
# Update 2 : Jan 25th, 2019
# Efficiency enhanced.
# File selection by user is working now in this version. User can choose the file to use in the program.
# In order to distinguish the top running of the program and the long-time running, notifications of percentage of the drawing work is added.
# Users can see the 25%, 50%, 75%, 100% notification from this version on during the time the program is drawing the preview image.
# Update 3 : Jan 31st, 2019
# Training model-aimed adaptability enhanced.
# More information about the image will be provided for further training in the future.
# List of the subimages which have the size of 512 * 512 provided, and we can use the list to do the training in the future.
# There was a bug during the adjustment of the existence of the head file, and now fixed.
# Update 4 : Feb 1st, 2019
# ***To make a smaller memory use and a shorter running time, the list of the final output data replaced by array.***
# Efficiency enhanced.
# Big image (larger than 30000 * 30000) supported.
# Unnecessary lists and arrays deleted or modified.
# There was a bug during the output of the 512 * 512 images, and now fixed.
import numpy as np
from osgeo import gdal
from PIL import Image, ImageFont, ImageDraw
import matplotlib.pyplot as plt
import os, sys
#----------判断是否存在头文件----------
currentdir = os.getcwd() #当前路径
filelist = os.listdir(currentdir) #当前文件夹内文件列表
extension = [0 for i in range(len(filelist))]
filename = [0 for i in range(len(filelist))]
for eachfileindex in range(len(filelist)):
extension[eachfileindex] = filelist[eachfileindex].split(".")[-1] #提取文件夹内所有文件的后缀
filename[eachfileindex] = filelist[eachfileindex].replace("." + extension[eachfileindex], "") #提取文件夹内所有文件的无后缀文件名
headexist = False
print("----------当前文件夹文件列表----------")
for eachfileindex in range(len(filelist)):
print(str(eachfileindex + 1) + " " + filelist[eachfileindex])
usefulfileindex = int(input("请输入需要处理的文件的序号。如果影像文件含有头文件,则请输入头文件的序号,程序将自动同时导入同文件夹下同名影像文件:"))
usefulfileindex -= 1
if extension[usefulfileindex] == "hdr":
headfilename = filelist[usefulfileindex]
imagefilename = filelist[usefulfileindex + 1]
headexist = True
elif extension[usefulfileindex] not in ["hdr", "img", "png", "tif"]:
print("----------文件读取失败----------\n本程序当前无法读取png图像、tif图像、img图像及其头文件以外的其他文件格式,程序将立刻退出。\n----------结束----------")
sys.exit(0)
else:
imagefilename = filelist[usefulfileindex]
if extension[usefulfileindex] == "hdr":
#----------影像头文件读取,各种短代码对应----------
dataheadfile = open(headfilename).read().replace("\n ", "")
dataheadfile = dataheadfile.split("\n")
for eachlineindedx in range(len(dataheadfile)):
dataheadfile[eachlineindedx] = dataheadfile[eachlineindedx].replace(" ", "").replace("{", "").replace("}", "").replace("\n", "").split("=")
for eachlineindedx in range(len(dataheadfile)):
if dataheadfile[eachlineindedx][0] == "description": #影像描述
head_description = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "samples": #列数
head_width = int(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "lines": #行数
head_height = int(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "bands": #波段数
head_bands = int(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "headeroffset": #影像文件读取时开头跳过字节数
head_headeroffset = int(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "filetype": #影像文件类型
head_filetype = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "datatype": #影像数据类型
if dataheadfile[eachlineindedx][1] == "1": #8位字节
head_datatype = "8-bit byte"
elif dataheadfile[eachlineindedx][1] == "2": #16位有符号整数
head_datatype = "16-bit signed integer"
elif dataheadfile[eachlineindedx][1] == "3": #32位有符号长整数
head_datatype = "32-bit signed long integer"
elif dataheadfile[eachlineindedx][1] == "4": #32位浮点数
head_datatype = "32-bit floating point"
elif dataheadfile[eachlineindedx][1] == "5": #64位双精度浮点数
head_datatype = "64-bit double-precision floating point"
elif dataheadfile[eachlineindedx][1] == "6": #2 * 32位复数,实虚双精度对
head_datatype = "2*32-bit complex, real-imaginary pair of double precision"
elif dataheadfile[eachlineindedx][1] == "9": #2 * 64位双精度复数,实虚双精度对
head_datatype = "2*64-bit double-precision complex, real-imaginary pair of double precision"
elif dataheadfile[eachlineindedx][1] == "12": #16位无符号整数
head_datatype = "16-bit unsigned integer"
elif dataheadfile[eachlineindedx][1] == "13": #32位无符号长整数
head_datatype = "32-bit unsigned long integer"
elif dataheadfile[eachlineindedx][1] == "14": #64位有符号长整数
head_datatype = "64-bit signed long integer"
elif dataheadfile[eachlineindedx][1] == "15": #64位无符号长整数
head_datatype = "64-bit unsigned long integer"
elif dataheadfile[eachlineindedx][0] == "interleave": #影像存储方式
head_interleave = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "sensortype": #传感器类型
head_sensortype = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "wavelengthunits": #波长单位
head_wavelengthunits = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "zplotrange": #影像坐标范围
dataheadfile[eachlineindedx][1] = dataheadfile[eachlineindedx][1].split(",")
head_zplotrange_min = float(dataheadfile[eachlineindedx][1][0])
head_zplotrange_max = float(dataheadfile[eachlineindedx][1][1])
elif dataheadfile[eachlineindedx][0] == "zplottitles": #影像横纵坐标标题
dataheadfile[eachlineindedx][1] = dataheadfile[eachlineindedx][1].split(",")
head_zplottitles_X = str(dataheadfile[eachlineindedx][1][0])
head_zplottitles_Y = str(dataheadfile[eachlineindedx][1][1])
elif dataheadfile[eachlineindedx][0] == "defaultstretch": #默认显示拉伸方式
head_defaultstretch = str(dataheadfile[eachlineindedx][1])
elif dataheadfile[eachlineindedx][0] == "bandnames": #各波段名称
head_bandnames = str(dataheadfile[eachlineindedx][1])
head_bandnames = head_bandnames.split(",")
elif dataheadfile[eachlineindedx][0] == "wavelength": #各波段波长
dataheadfile[eachlineindedx][1] = dataheadfile[eachlineindedx][1].split(",")
head_wavelength = dataheadfile[eachlineindedx][1]
#下面的倍数变量transmultiple用于统一将头文件中提供的波长转换为纳米单位以供处理
if head_wavelengthunits == "Micrometers":
transmultiple = 1000
for eachwavelengthindex in range(len(head_wavelength)): #波长频谱对应信息,波长范围可能不准确
nanometerwavelength = float(head_wavelength[eachwavelengthindex]) * transmultiple
if nanometerwavelength > 400 and nanometerwavelength <= 500:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":蓝光B)"
elif nanometerwavelength > 500 and nanometerwavelength <= 580:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":绿光G)"
elif nanometerwavelength > 580 and nanometerwavelength <= 780:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":红光R)"
elif nanometerwavelength > 780 and nanometerwavelength <= 2526:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":近红外NIR)"
elif nanometerwavelength > 2526 and nanometerwavelength <= 25000:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":中红外IIR)"
elif nanometerwavelength > 25000 and nanometerwavelength <= 300000:
head_wavelength[eachwavelengthindex] = head_wavelength[eachwavelengthindex] + "(" + head_bandnames[eachwavelengthindex] + ":远红外FIR)"
print(
"----------当前打开的文件信息----------\n" +
"━┳来自头文件报告的信息:\n" +
" ┣━影像描述 = " + head_description + "\n" +
" ┣━列数 = " + str(head_width) + "\n" +
" ┣━行数 = " + str(head_height) + "\n" +
" ┣━波段数 = " + str(head_bands) + "\n" +
" ┣━列数 = " + str(head_width) + "\n" +
" ┣━影像文件类型 = " + head_filetype + "\n" +
" ┣━影像数据类型 = " + head_datatype + "\n" +
" ┣━影像存储方式 = " + head_interleave + "\n" +
" ┣━传感器类型 = " + head_sensortype + "\n" +
" ┗┳各波段名称、波长及所属波段"
)
for eachwavelengthindex in range(len(head_wavelength)-1):
print(" ┣━" + head_wavelength[eachwavelengthindex])
print(" ┗━" + head_wavelength[len(head_wavelength)-1])
else:
print(
"----------当前打开的影像文件信息----------\n" +
"━┳来自头文件报告的信息:\n" +
" ┗━选择的文件非头文件,将只处理选中的影像文件。"
)
#----------影像文件读取----------
data = gdal.Open(imagefilename) #打开影像
image_width = data.RasterXSize
image_height = data.RasterYSize
image_geotrans = data.GetGeoTransform() #仿射矩阵
image_proj = data.GetProjection() #地图投影信息
image_data = data.ReadAsArray(0, 0, image_width, image_height).astype(np.float) #将数据写成数组,对应原图像栅格矩阵
#在image_data数组中,第一层索引值0, 1, 2…分别代表影像的第1, 2, 3…波段,第二层索引值代表行数height,第三层索引值代表列数width
print(
"━┳来自影像文件报告的信息:\n" +
" ┣━列数 = " + str(image_width) + "\n" +
" ┣━行数 = " + str(image_height) + "\n" +
" ┣━波段数 = " + str(len(image_data)) + "\n" +
" ┣━仿射矩阵 = " + str(image_geotrans) + "\n" +
" ┗━投影信息 = " + str(image_proj) + "\n"
)
print("----------头文件与影像文件相符性检查----------")
if extension[usefulfileindex] != "hdr":
print("选择的文件非头文件,无法进行头文件与影像文件相符性检查。")
elif head_width == image_width and head_height != image_height:
print("头文件与同名影像文件报告的列数相符但行数不相符,验证不通过。请检查头文件与影像文件是否配套。")
elif head_width != image_width and head_height == image_height:
print("头文件与同名影像文件报告的行数相符但列数不相符,验证不通过。请检查头文件与影像文件是否配套。")
elif head_width != image_width and head_height != image_height:
print("头文件与同名影像文件报告的行列数均不相符,验证不通过。请检查头文件与影像文件是否配套。")
elif head_width == image_width and head_height == image_height:
print("头文件与同名影像文件报告的行列数相符,验证通过。")
else:
print("头文件与同名影像文件相符性检查出现未知错误,验证不通过。请检查文件。")
print("----------预览图绘制----------\n对于较大的影像,该过程可能会花费较长时间,请等待。\n预览图将在所有波段全部绘制完成后显示。")
#----------分波段绘图,对读入的影像进行线性拉伸处理以产生良好的输出效果----------
plt.figure("Current Image Preview of Each Band (" + "Width = " + str(image_width) + ", Height = " + str(image_height) + ")")
linearstretchmultiplenotification = ["" for i in range(len(image_data))]
for eachbandindex in range(len(image_data)):
#for eachbandindex in range(1):
print("━┳波段" + str(eachbandindex + 1) + "读取")
imageshow = Image.new("L", (image_width, image_height))
maxvalueinband = 0
for eachcolumnindex in range (0, image_width):
for eachlineindex in range (0, image_height):
if image_data[eachbandindex][eachlineindex][eachcolumnindex] > maxvalueinband:
maxvalueinband = image_data[eachbandindex][eachlineindex][eachcolumnindex]
if abs(eachcolumnindex - image_width / 4) < 0.5:
print(" ┣━波段" + str(eachbandindex + 1) + "读取 - 25%已完成")
elif abs(eachcolumnindex - image_width / 2) <= 1 and eachcolumnindex < image_width / 2:
print(" ┣━波段" + str(eachbandindex + 1) + "读取 - 50%已完成")
elif abs(eachcolumnindex - image_width * 3 / 4) < 0.5:
print(" ┣━波段" + str(eachbandindex + 1) + "读取 - 75%已完成")
elif abs(eachcolumnindex - image_width) == 1:
print(" ┣━波段" + str(eachbandindex + 1) + "读取 - 100%已完成")
print(" ┗━根据读取到的数据绘制波段" + str(eachbandindex + 1) + "的预览图…")
linearstretchmultiple = 255 / maxvalueinband
for eachcolumnindex in range (0, image_width):
for eachlineindex in range (0, image_height):
imageshow.putpixel((eachcolumnindex, eachlineindex), int(image_data[eachbandindex][eachlineindex][eachcolumnindex] * linearstretchmultiple))
draw = ImageDraw.Draw(imageshow) #绘图句柄
x, y=(0, 0) #初始左上角的坐标
#draw.ink = (R) + (G) * 256 + (B) * 256 * 256
draw.ink = 255 + 255 * 256 + 255 * 256 * 256 #颜色
font = ImageFont.truetype("courbd.ttf", int(image_height / 15))
if headexist == True:
draw.text((x, y), head_bandnames[eachbandindex], font = font) #在图中加入文字标注
else:
draw.text((x, y), str(eachbandindex + 1), font = font)
if len(image_data) % 2 == 0:
subplot = plt.subplot(2, len(image_data) / 2, eachbandindex + 1)
else:
subplot = plt.subplot(2, (len(image_data) + 1) / 2, eachbandindex + 1)
if headexist == True:
subplot.set_title(head_bandnames[eachbandindex])
else:
subplot.set_title(str(eachbandindex + 1))
plt.imshow(imageshow)
#imageshow.show()
if extension[usefulfileindex] == "hdr":
linearstretchmultiplenotification[eachbandindex] = str("波段" + head_bandnames[eachbandindex] + "的线性拉伸比例 = " + str(linearstretchmultiple))
else:
linearstretchmultiplenotification[eachbandindex] = str("波段" + str(eachbandindex + 1) + "的线性拉伸比例 = " + str(linearstretchmultiple))
#PIL颜色模式
#1 1位像素,黑和白,按8位像素存储
#L 8位像素,黑白
#P 8位像素,使用调色板映射到任何其他模式
#RGB 3×8位像素,真彩
#RGBA 4×8位像素,真彩+透明通道
#CMYK 4×8位像素,颜色隔离
#YCbCr 3×8位像素,彩色视频格式
#I 32位整型像素
#F 32位浮点型像素
plt.show()
for eachbandindex in range(len(image_data)):
print(linearstretchmultiplenotification[eachbandindex])
print("预览图绘制完成。")
#----------影像高级处理,以NDVI计算为例----------
#ndvi = (image_data[3] - image_data[2]) / (image_data[3] + image_data[2])
print("----------结束----------")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化