加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train_lm.py 3.88 KB
一键复制 编辑 原始数据 按行查看 历史
LiangSong 提交于 2023-05-09 16:53 . add comment
"""
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-04-12 19:12:42
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-05-08 23:39:35
FilePath: /Open-Llama/train_lm.py
Description:
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
"""
import yaml
import logging
from absl import app
from absl import flags
from accelerate import Accelerator
from torch.utils.data import DataLoader
from peft import LoraConfig, TaskType, get_peft_model
from datasets.distributed import split_dataset_by_node
from transformers import AutoConfig, AutoModelForCausalLM, LlamaTokenizer
from dataset.dataset import construct_dataset
from solver.trainer import Trainer
FLAGS = flags.FLAGS
flags.DEFINE_string("train_config", None, "Training config path")
flags.DEFINE_string(
"model_config", "configs/model_configs/7B.json", "Model config path"
)
def main(argv):
with open(FLAGS.train_config, "r", encoding="utf-8") as fp:
config = yaml.load(fp, Loader=yaml.FullLoader)
accelerator = Accelerator(
gradient_accumulation_steps=config["train"].get(
"gradient_accumulation_steps", 1
)
)
tokenizer = LlamaTokenizer(
config["data"]["tokenizer_model_path"],
pad_token="<pad>",
add_bos_token=False,
add_eos_token=True,
)
data_config = config["data"]
if data_config.get("split_by_shard", False):
train_dataset = construct_dataset(
data_config, tokenizer, world_size=accelerator.num_processes
)
else:
train_dataset = construct_dataset(data_config, tokenizer)
train_dataset = split_dataset_by_node(
train_dataset,
rank=accelerator.process_index,
world_size=accelerator.num_processes,
)
train_loader = DataLoader(
train_dataset,
batch_size=config["train"]["train_batch_size"],
num_workers=config["train"]["train_num_workers"],
prefetch_factor=config["train"].get("prefetch_factor", 2),
pin_memory=True,
)
# smaller initializer_range make training more stable
# add stabel embedding to token embedding
model_config = AutoConfig.from_pretrained(FLAGS.model_config)
model_config.vocab_size = tokenizer.vocab_size
model_config.pad_token_id = tokenizer.pad_token_id
# 使用AutoModel可以在Deepspeed.zero.Init()下正确的生效,而直接使用如OpenLlamaModel不能正确生效,导致浪费大量内存空间
# https://github.com/huggingface/accelerate/pull/932
if config["train"]["ckpt"] is not None:
raw_model = AutoModelForCausalLM.from_pretrained(
config["train"]["ckpt"], config=model_config
)
logging.warning("Loaded ckpt from: {}".format(config["train"]["ckpt"]))
else:
raw_model = AutoModelForCausalLM.from_config(model_config)
# lora
if config["train"].get("use_lora", False):
# gradient ckpt bug, https://github.com/huggingface/transformers/issues/23170
if hasattr(raw_model, "enable_input_require_grads"):
raw_model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
raw_model.get_input_embeddings().register_forward_hook(
make_inputs_require_grad
)
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "v_proj"],
inference_mode=False,
r=1,
lora_alpha=32,
lora_dropout=0.1,
)
raw_model = get_peft_model(raw_model, peft_config)
raw_model.print_trainable_parameters()
if config["train"].get("gradient_checkpointing_enable", False):
raw_model.gradient_checkpointing_enable()
trainer = Trainer(config, raw_model, train_loader, tokenizer, accelerator)
trainer.train()
if __name__ == "__main__":
app.run(main)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化