代码拉取完成,页面将自动刷新
#coding=utf-8
import torch
import torch.nn as nn
from torch.nn import init
from torchvision import models
import os
import numpy as np
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def weights_init_xavier(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_normal_(m.weight.data, gain=0.02)
elif classname.find('Linear') != -1:
init.xavier_normal_(m.weight.data, gain=0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def weights_init_kaiming(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print('initialization method [%s]' % init_type)
if init_type == 'normal':
net.apply(weights_init_normal)
elif init_type == 'xavier':
net.apply(weights_init_xavier)
elif init_type == 'kaiming':
net.apply(weights_init_kaiming)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(FeatureExtraction, self).__init__()
downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
model = [downconv, nn.ReLU(True), norm_layer(ngf)]
for i in range(n_layers):
in_ngf = 2**i * ngf if 2**i * ngf < 512 else 512
out_ngf = 2**(i+1) * ngf if 2**i * ngf < 512 else 512
downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
model += [downconv, nn.ReLU(True)]
model += [norm_layer(out_ngf)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
model += [norm_layer(512)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
self.model = nn.Sequential(*model)
init_weights(self.model, init_type='normal')
def forward(self, x):
return self.model(x)
class FeatureL2Norm(torch.nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature,norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b,c,h,w = feature_A.size()
# reshape features for matrix multiplication
feature_A = feature_A.transpose(2,3).contiguous().view(b,c,h*w)
feature_B = feature_B.view(b,c,h*w).transpose(1,2)
# perform matrix mult.
feature_mul = torch.bmm(feature_B,feature_A)
correlation_tensor = feature_mul.view(b,h,w,h*w).transpose(2,3).transpose(1,2)
return correlation_tensor
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512,output_dim=6, use_cuda=True):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
if use_cuda:
self.conv.cuda()
self.linear.cuda()
self.tanh.cuda()
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
x = self.tanh(x)
return x
class AffineGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, out_ch = 3):
super(AffineGridGen, self).__init__()
self.out_h = out_h
self.out_w = out_w
self.out_ch = out_ch
def forward(self, theta):
theta = theta.contiguous()
batch_size = theta.size()[0]
out_size = torch.Size((batch_size,self.out_ch,self.out_h,self.out_w))
return F.affine_grid(theta, out_size)
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, use_regular_grid=True, grid_size=3, reg_factor=0, use_cuda=True):
super(TpsGridGen, self).__init__()
self.out_h, self.out_w = out_h, out_w
self.reg_factor = reg_factor
self.use_cuda = use_cuda
# create grid in numpy
self.grid = np.zeros( [self.out_h, self.out_w, 3], dtype=np.float32)
# sampling grid with dim-0 coords (Y)
self.grid_X,self.grid_Y = np.meshgrid(np.linspace(-1,1,out_w),np.linspace(-1,1,out_h))
# grid_X,grid_Y: size [1,H,W,1,1]
self.grid_X = torch.FloatTensor(self.grid_X).unsqueeze(0).unsqueeze(3)
self.grid_Y = torch.FloatTensor(self.grid_Y).unsqueeze(0).unsqueeze(3)
if use_cuda:
self.grid_X = self.grid_X.cuda()
self.grid_Y = self.grid_Y.cuda()
# initialize regular grid for control points P_i
if use_regular_grid:
axis_coords = np.linspace(-1,1,grid_size)
self.N = grid_size*grid_size
P_Y,P_X = np.meshgrid(axis_coords,axis_coords)
P_X = np.reshape(P_X,(-1,1)) # size (N,1)
P_Y = np.reshape(P_Y,(-1,1)) # size (N,1)
P_X = torch.FloatTensor(P_X)
P_Y = torch.FloatTensor(P_Y)
self.P_X_base = P_X.clone()
self.P_Y_base = P_Y.clone()
self.Li = self.compute_L_inverse(P_X,P_Y).unsqueeze(0)
self.P_X = P_X.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0,4)
self.P_Y = P_Y.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0,4)
if use_cuda:
self.P_X = self.P_X.cuda()
self.P_Y = self.P_Y.cuda()
self.P_X_base = self.P_X_base.cuda()
self.P_Y_base = self.P_Y_base.cuda()
def forward(self, theta):
warped_grid = self.apply_transformation(theta,torch.cat((self.grid_X,self.grid_Y),3))
return warped_grid
def compute_L_inverse(self,X,Y):
N = X.size()[0] # num of points (along dim 0)
# construct matrix K
Xmat = X.expand(N,N)
Ymat = Y.expand(N,N)
P_dist_squared = torch.pow(Xmat-Xmat.transpose(0,1),2)+torch.pow(Ymat-Ymat.transpose(0,1),2)
P_dist_squared[P_dist_squared==0]=1 # make diagonal 1 to avoid NaN in log computation
K = torch.mul(P_dist_squared,torch.log(P_dist_squared))
# construct matrix L
O = torch.FloatTensor(N,1).fill_(1)
Z = torch.FloatTensor(3,3).fill_(0)
P = torch.cat((O,X,Y),1)
L = torch.cat((torch.cat((K,P),1),torch.cat((P.transpose(0,1),Z),1)),0)
Li = torch.inverse(L)
if self.use_cuda:
Li = Li.cuda()
return Li
def apply_transformation(self,theta,points):
if theta.dim()==2:
theta = theta.unsqueeze(2).unsqueeze(3)
# points should be in the [B,H,W,2] format,
# where points[:,:,:,0] are the X coords
# and points[:,:,:,1] are the Y coords
# input are the corresponding control points P_i
batch_size = theta.size()[0]
# split theta into point coordinates
Q_X=theta[:,:self.N,:,:].squeeze(3)
Q_Y=theta[:,self.N:,:,:].squeeze(3)
Q_X = Q_X + self.P_X_base.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
# get spatial dimensions of points
points_b = points.size()[0]
points_h = points.size()[1]
points_w = points.size()[2]
# repeat pre-defined control points along spatial dimensions of points to be transformed
P_X = self.P_X.expand((1,points_h,points_w,1,self.N))
P_Y = self.P_Y.expand((1,points_h,points_w,1,self.N))
# compute weigths for non-linear part
W_X = torch.bmm(self.Li[:,:self.N,:self.N].expand((batch_size,self.N,self.N)),Q_X)
W_Y = torch.bmm(self.Li[:,:self.N,:self.N].expand((batch_size,self.N,self.N)),Q_Y)
# reshape
# W_X,W,Y: size [B,H,W,1,N]
W_X = W_X.unsqueeze(3).unsqueeze(4).transpose(1,4).repeat(1,points_h,points_w,1,1)
W_Y = W_Y.unsqueeze(3).unsqueeze(4).transpose(1,4).repeat(1,points_h,points_w,1,1)
# compute weights for affine part
A_X = torch.bmm(self.Li[:,self.N:,:self.N].expand((batch_size,3,self.N)),Q_X)
A_Y = torch.bmm(self.Li[:,self.N:,:self.N].expand((batch_size,3,self.N)),Q_Y)
# reshape
# A_X,A,Y: size [B,H,W,1,3]
A_X = A_X.unsqueeze(3).unsqueeze(4).transpose(1,4).repeat(1,points_h,points_w,1,1)
A_Y = A_Y.unsqueeze(3).unsqueeze(4).transpose(1,4).repeat(1,points_h,points_w,1,1)
# compute distance P_i - (grid_X,grid_Y)
# grid is expanded in point dim 4, but not in batch dim 0, as points P_X,P_Y are fixed for all batch
points_X_for_summation = points[:,:,:,0].unsqueeze(3).unsqueeze(4).expand(points[:,:,:,0].size()+(1,self.N))
points_Y_for_summation = points[:,:,:,1].unsqueeze(3).unsqueeze(4).expand(points[:,:,:,1].size()+(1,self.N))
if points_b==1:
delta_X = points_X_for_summation-P_X
delta_Y = points_Y_for_summation-P_Y
else:
# use expanded P_X,P_Y in batch dimension
delta_X = points_X_for_summation-P_X.expand_as(points_X_for_summation)
delta_Y = points_Y_for_summation-P_Y.expand_as(points_Y_for_summation)
dist_squared = torch.pow(delta_X,2)+torch.pow(delta_Y,2)
# U: size [1,H,W,1,N]
dist_squared[dist_squared==0]=1 # avoid NaN in log computation
U = torch.mul(dist_squared,torch.log(dist_squared))
# expand grid in batch dimension if necessary
points_X_batch = points[:,:,:,0].unsqueeze(3)
points_Y_batch = points[:,:,:,1].unsqueeze(3)
if points_b==1:
points_X_batch = points_X_batch.expand((batch_size,)+points_X_batch.size()[1:])
points_Y_batch = points_Y_batch.expand((batch_size,)+points_Y_batch.size()[1:])
points_X_prime = A_X[:,:,:,:,0]+ \
torch.mul(A_X[:,:,:,:,1],points_X_batch) + \
torch.mul(A_X[:,:,:,:,2],points_Y_batch) + \
torch.sum(torch.mul(W_X,U.expand_as(W_X)),4)
points_Y_prime = A_Y[:,:,:,:,0]+ \
torch.mul(A_Y[:,:,:,:,1],points_X_batch) + \
torch.mul(A_Y[:,:,:,:,2],points_Y_batch) + \
torch.sum(torch.mul(W_Y,U.expand_as(W_Y)),4)
return torch.cat((points_X_prime,points_Y_prime),3)
# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
self.model = unet_block
def forward(self, input):
return self.model(input)
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downconv]
up = [uprelu, upsample, upconv, upnorm]
model = down + [submodule] + up
elif innermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upsample, upconv, upnorm]
model = down + up
else:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc*2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upsample, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class Vgg19(nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self, layids = None):
super(VGGLoss, self).__init__()
self.vgg = Vgg19()
self.vgg.cuda()
self.criterion = nn.L1Loss()
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
self.layids = layids
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
if self.layids is None:
self.layids = list(range(len(x_vgg)))
for i in self.layids:
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
class GMM(nn.Module):
""" Geometric Matching Module
"""
def __init__(self, opt):
super(GMM, self).__init__()
self.extractionA = FeatureExtraction(22, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
self.extractionB = FeatureExtraction(3, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2*opt.grid_size**2, use_cuda=True)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, use_cuda=True, grid_size=opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.cpu().state_dict(), save_path)
model.cuda()
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
return
model.load_state_dict(torch.load(checkpoint_path))
model.cuda()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。